Länkstig

Licentiatseminarium: Sebastian Kilde Löfgren

Forskning
Naturvetenskap & IT
Utbildning & lärande

Licentiatseminarium i fysik. Titeln på licentiatuppsatsen är "The mechanical Paul trap in the upper secondary physics laboratory".

Examination,
Seminarium
Datum
14 jun 2023
Tid
13:00 - 15:00
Plats
PJ-salen

Opponent : Magdalena Kersting, University of Copenhagen

Examinator: Anne Farewell

Handledare: Jonas Enger

Abstract

In physics, toy models are often used in popular science contexts. Further, toy models have also been used to communicate some important principles of abstract phenomena qualitatively. One such example can be found in the 1989 Nobel laureate Wolfgang Paul’s Nobel lecture. Previous research on models in science education has identified that using models and engaging students in model development could improve learning outcomes. However, an important issue is making model development meaningful for students in similar ways that scientists can use models and the modelling process to learn. This thesis investigates the usefulness of a toy model of the Paul trap, the mechanical Paul trap, for the upper secondary physics classroom. To do this, two studies were conducted, considered part of one design experiment. The first study investigated the mechanical Paul trap and its similarities and differences to a linear Paul trap to develop a physical model and a simulation for the design experiment. The second study used a design-based research approach, guided by variation theory, to conduct a mixed-method study developing a laboratory exercise and investigating how students interacted with and what learning was made possible using the mechanical Paul trap. The laboratory exercise was developed over three phases, consisting of three to five laboratory sessions each. Results from the first study provided suggestions for constructing an accessible and affordable physical model of the mechanical Paul trap. In addition, it resulted in the development of two similar simulations but in different online environments. The second study identified patterns of variation, highlighting critical steps where struggling and successful lab groups differed. One example is that it was critical to discern the threshold frequency as a step to discern the rotational frequency-trapping time relation. Further, findings also support the argument that the level of openness in laboratory exercises should be chosen deliberately by the teacher, with both the current groups of students and the complexity of the laboratory exercise at hand. Finally, it contributes to the discussion regarding the use of models in physics education by exemplifying how working with models can better help students understand the limitations and use cases of different models in physics.

Läs mer

Licentiatavhandlingen finns att läsa i GUPEA: 

The mechanical Paul trap in the upper secondary physics laboratory