Hoppa till huvudinnehåll
Bild
Matematiska tecken och mönster
Foto: /Konstnär: Per Petersson
Länkstig

Analytisk talteori

Kurs
MMA340
Avancerad nivå
7,5 högskolepoäng (hp)

Om utbildningen

Analytisk talteori är den del av talteorin som använder metoder från
matematisk analys för att svara på frågor om heltal i allmänhet och
primtal i synnerhet. Ämnet bröt sig loss som en självständig del av
talteorin under 1800-talet då arbeten av bland andra Dirichlet och
Riemann visade att metoder från komplex analys kan användas för att
studera primtalens fördelning bland de naturliga talen. Trots att
Riemann endast skrev en artikel på 10 sidor i analytisk talteori så har
Riemanns idéer genomsyrat mycket av den forskning som har genomförts
under de senaste 150 åren. Riemanns fundamentala insikt var att
primtalens fördelning är intimt kopplad till en komplex funktion som har
fått namnet Riemanns zetafunktion. Riemanns zetafunktion har sedan dess
blivit grundligt studerad, inte minst i samband med den så kallade
Riemannhypotesen som beskriver var zetafunktionens nollställen ska
ligga.

I den här kursen kommer du att studera aritmetiska funktioner,
Dirichletserier, Riemanns zetafunktion och Dirichlets L-funktioner.
Denna kunskap kommer du sedan använda för att bevisa primtalssatsen och
primtalssatsen för aritmetiska följder som på olika sätt beskriver
primtalens fördelning bland de naturliga talen.

För mer information

Behörigheter och urval

Förkunskapskrav

Utöver grundläggande behörighet krävs kunskaper motsvarande MMG700 Analytiska funktioner. Kursen MMG100 Elementär talteori rekommenderas också, men är inte ett krav.

Så är det att plugga

Lokaler

Matematiska vetenskaper är en gemensam institution
Chalmers/Göteborgs universitet. Din undervisning sker i Matematiska
vetenskapers rymliga och ljusa lokaler på Chalmers campus Johanneberg, där det finns föreläsningssalar, datorsalar och grupprum. Här finns också
studentlunchrum och läsesal, liksom studievägledare och studieexpedition.

Karta över Campus Johanneberg