Skip to main content
Image
Marint plankton
Marine plankton. Copepods to the right.
Photo: Erik Selander
Breadcrumb

MARICE – Marine Chemical Ecology Group

Research group

Short description

Chemical signals mediate some of the most critical interactions in marine communities including mate-finding, detection of prey and avoidance of predators. MARICE aims to increase our understanding of these chemically mediated interactions. It is an interdisciplinary research group that combines expertise in ecology, chemistry, evolution, microbiology, genetics, and hydrodynamics. We use experimental ecology approaches and combine these with state-of-the-art analytics such as the isolation and characterization of metabolites, and exploration of signal propagation in our hydromechanical laboratory.

More about the research

MARICE is a community of scientists at the University of Gothenburg interested in basic and applied research in marine chemical ecology. With this, we form a unique national position in basic marine chemical ecology research and are also one of the internationally leading nodes within this research area.

Besides research, MARICE focuses on different forms of joint activities to increase national and international exchange and collaborations. This includes e.g., arrangement of post graduate courses, workshops and so called “mini-projects” where different constellations of researchers work intensely on a joint project during one week.

Marice logo

Members

RESEARCHERS

Emma Berdan, Department of Marine Sciences – Gothenburg
Personal webpage
E-mail: emma.berdan@gmail.com

Gunnar Cervin, Department of Marine Sciences – Tjärnö
Personal webpage
E-mail: gunnar.cervin@marine.gu.se

Swantje Enge, Department of Marine Sciences – Tjärnö
Personal webpage
E-mail: swantje.enge@marine.gu.se

Alexandra Kinnby, Department of Marine Sciences – Tjärnö
Personal webpage
E-mail: alexandra.kinnby@marine.gu.se

Ann Larsson, Department of Marine Sciences – Tjärnö
Personal webpage
E-mail: ann.larsson@marine.gu.se

Göran Nylund, Department of Marine Sciences – Tjärnö
Personal webpage
E-mail: goran.nylund@marine.gu.se

Henrik Pavia, Department of Marine Sciences – Tjärnö
Personal webpage
​​​​​​​E-mail: henrik.pavia@marine.gu.se

Kristie Rigby, Department of Marine Sciences – Gothenburg
Personal webpage
​​​​​​​E-mail: kristie.rigby@gu.se

Erik Selander, Department of Marine Sciences – Gothenburg
Personal webpage
​​​​​​​E-mail: erik.selander@marine.gu.se

Gunilla Toth, Department of Marine Sciences – Tjärnö
Personal webpage
​​​​​​​E-mail: gunilla.toth@marine.gu.se

 

MASTER STUDENTS (2020–2021)

Malin Klasson FrisellDepartment of Marine Sciences – Gothenburg
​​​​​​​E-mail: gusfrimat@student.gu.se

Henrik MöllerDepartment of Marine Sciences – Gothenburg
​​​​​​​E-mail: gusmollhe@student.gu.se

 

Publications

LATEST FIVE PUBLICATIONS

Kinnby, A., Jonsson, P. R., Ortega-Martinez, O., Töpel, M., Pavia, H., Pereyra, R. T., & Johannesson, K. (2020). Combining an Ecological Experiment and a Genome Scan Show Idiosyncratic Responses to Salinity Stress in Local Populations of a Seaweed. Frontiers in Marine Science, 7, 470.

Hasselström, L., Thomas, J. B., Nordström, J., Cervin, G., Nylund, G. M., Pavia, H., & Gröndahl, F. (2020). Socioeconomic prospects of a seaweed bioeconomy in Sweden. Scientific reports, 10 (1), 1-7.

Selander, E., Fredriksson, S. T., & Arneborg, L. (2020). Chemical Signaling in the Turbulent Ocean – Hide and Seek at the Kolmogorov Scale. Fluids, 5(2), 54. 

Toth, G. B., Harrysson, H., Wahlström, N., Olsson, J., Oerbekke, A., Steinhagen, S., Kinnby, A., White J., Albers E., Edlund U., Undeland, I. & Pavia H. (2020) Effects of irradiance, temperature, nutrients, and pCO2 on the growth and biochemical composition of cultivated Ulva fenestrata. J Appl Phycol. 32, 3243–3254.

Olsson, J., Toth, G.B., Oerbekke, A., Cvijetinovic, S., Wahlström, N., Harrysson, H., Steinhagen, S., Kinnby, A., White, J., Edlund, U., Undeland, I., Pavia, H, & Albers, E. (2020). Cultivation conditions affect the monosaccharide composition in Ulva fenestrata J Appl Phycol. 32, 3255–3263.

 

Kinnby, A., Jonsson, P. R., Ortega-Martinez, O., Töpel, M., Pavia, H., Pereyra, R. T., & Johannesson, K. (2020). Combining an Ecological Experiment and a Genome Scan Show Idiosyncratic Responses to Salinity Stress in Local Populations of a Seaweed. Frontiers in Marine Science, 7, 470.

Hasselström, L., Thomas, J. B., Nordström, J., Cervin, G., Nylund, G. M., Pavia, H., & Gröndahl, F. (2020). Socioeconomic prospects of a seaweed bioeconomy in Sweden. Scientific reports, 10 (1), 1-7.

Selander, E., Fredriksson, S. T., & Arneborg, L. (2020). Chemical Signaling in the Turbulent Ocean – Hide and Seek at the Kolmogorov Scale. Fluids, 5(2), 54. 

Toth, G. B., Harrysson, H., Wahlström, N., Olsson, J., Oerbekke, A., Steinhagen, S., Kinnby, A., White J., Albers E., Edlund U., Undeland, I. & Pavia H. (2020) Effects of irradiance, temperature, nutrients, and pCO2 on the growth and biochemical composition of cultivated Ulva fenestrata. J Appl Phycol. 32, 3243–3254.

Olsson, J., Toth, G.B., Oerbekke, A., Cvijetinovic, S., Wahlström, N., Harrysson, H., Steinhagen, S., Kinnby, A., White, J., Edlund, U., Undeland, I., Pavia, H, & Albers, E. (2020). Cultivation conditions affect the monosaccharide composition in Ulva fenestrata J Appl Phycol. 32, 3255–3263.

Prevett, A., Lindström, J., Xu, J., Karlson, B., & Selander, E. (2019). Grazer-induced bioluminescence gives dinoflagellates a competitive edge. Current Biology, 29(12), R564-R565. 

Saha, M., Berdalet, E., Carotenuto, Y., Fink, P., Harder, T., John, U., . . . Selander, E. (2019). Using chemical language to shape future marine health. Frontiers in Ecology and the Environment, 17(9), 530-537. 

Selander, E., Berglund, E., Engström, P., Berggren, F., Eklund, J., Harðardóttir, S., . . . Andersson, M. (2019). Copepods drive large-scale trait-mediated effects in marine plankton. Science Advances, 5(2), eaat5096. 

Govindarajan, A. F., Källström, B., Selander, E., Östman, C., & Dahlgren, T. G. (2019). The highly toxic and cryptogenic clinging jellyfish Gonionemus sp.(Hydrozoa, Limnomedusae) on the Swedish west coast. Peerj, 7, e6883. 

Kinnby, A., Pereyra, R. T., Havenhand, J. N., De Wit, P., Jonsson, P. R., Pavia, H., & Johannesson, K. (2019). Factors affecting formation of adventitious branches in the seaweeds Fucus vesiculosus and F. radicans. BMC ecology, 19 (1), 22.

Moodie, L. W., Cervin, G., Trepos, R., Labriere, C., Hellio, C., Pavia, H., & Svenson, J. (2018). Design and biological evaluation of antifouling dihydrostilbene oxime hybrids. Marine Biotechnology, 20(2), 257-267.

Amato, A., Sabatino, V., Nylund, G. M., Bergkvist, J., Basu, S., Andersson, M. X., . . . Selander, E. (2018). Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom Skeletonema marinoi. The ISME journal, 12(6), 1594-1604. 

Grebner, W., Berglund, E. C., Berggren, F., Eklund, J., Harðadóttir, S., Andersson, M. X., & Selander, E. (2018). Induction of defensive traits in marine plankton—new copepodamide structures. Limnology and Oceanography, 64(2), 820-831.

Lundholm, N., Krock, B., John, U., Skov, J., Cheng, J., Pančić, M., . . . Selander, E. (2018). Induction of domoic acid production in diatoms—types of grazers and diatoms are important. Harmful Algae, 79, 64-73.

Facilities

Gothenburg

Situated in the heart of Gothenburg, our facilities include an in-house culture collection of marine microalgae including mutant knock-outs of the model organism Skeletonema marinoi. The chemical lab includes a LC-QQQ-MS, a GC-MS, a particle counter, and a flow-cytometer. Gothenburg also offers a cutting-edge filming set-up that can be used for motion analysis of micro- and mesoplankton.

Tjärnö Marine Laboratory

Conveniently located next to the Kosterhavet Marine National Park, the Tjärnö Marine Laboratory is one of Europe’s largest and most modern research stations and part of the Marine Infrastructure at Gothenburg University. The location offers excellent access to a range of marine environments from shallow-water to deep-sea habitats.

Our chemical laboratories are equipped with HPLC, preparative HPLC, LC-QTOF-MS, LC-QQQ-MS, and GC-MS. The hydrodynamic laboratory is equipped with ADV and PIV for flow velocity measurements and LIF for concentration measurement of fluorescent dye. Our modern and functional DNA and RNA labs allow for genomic analyses.