Håkan Samuelsson Kalm
About Håkan Samuelsson Kalm
Håkan Samuelsson Kalm's area of research is Several Complex Variables. This is a central and natural field of mathematics with close connections to, e.g., algebraic geometry, differential equations, representation theory, and fundamental physics. A central theme in Håkan's research is the calculus of residue currents. Residue currents is the analytic counterpart of fundamental algebraic-geometric objects (e.g., curves and surfaces) and they can for be used, for instance, to find explicit solutions to certain equations.
See also http://www.chalmers.se/en/Staff/Pages/hakan-samuelsson.aspx
-
The $\bar\partial$-equation, duality, and holomorphic forms on a reduced complex
space
Håkan Samuelsson Kalm
Journal of Geometric Analysis - 2020-01-01 -
Estimates for the ∂¯ -Equation on Canonical
Surfaces
Mats Andersson, Richard Lärkäng, J. Ruppenthal, Håkan Samuelsson Kalm, Elizabeth Wulcan
Journal of Geometric Analysis - 2020-01-01 -
A SMOOTHNESS CRITERION FOR COMPLEX SPACES IN TERMS OF DIFFERENTIAL
FORMS
Håkan Samuelsson Kalm, M. Sera
Mathematica Scandinavica - 2020-01-01 -
Global representation of Segre numbers by Monge–Ampère
products
Mats Andersson, Dennis Eriksson, Håkan Samuelsson Kalm, Elizabeth Wulcan
Mathematische Annalen - 2020-01-01 -
One parameter regularizations of products of residue
currents
Mats Andersson, Håkan Samuelsson Kalm, Elizabeth Wulcan, Alain Yger
Trends in Mathematics - 2017-01-01 -
Adjunction for the Grauert-Riemenschneider canonical sheaf and extension of L²-cohomology
classes
Jean Ruppenthal, Håkan Samuelsson Kalm, Elizabeth Wulcan
Indiana University Mathematics Journal - 2015-01-01