Irina Pettersson
About Irina Pettersson
My research concerns asymptotic analysis and homogenization of partial differential operators. The problems originate often in mathematical physics and describe phenomena like electromagnetic wave scattering on small particles and heat transfer.
In the classical homogenization theory, one studies mixtures of materials with different properties. Such mixtures might have two scales: a microscopic scale describing the microstructure of the heterogeneous material and a macroscopic scale representing the size of the material. The homogenization theory provides tools to rigorously substitute the heterogeneous material with microstructure by a new homogeneous material. The properties of the new homogeneous material are called effective (homogenized) and the resulting equations are often easier to solve than the original equations. One well-known example is a derivation of the Darcy law for transport in porous media from Navier-Stokes equations.
Now I am interested in signal propagation in neurons, and I am working on the derivation of a 1D nonlinear cable equation from a 3D-model based on the Hodgkin-Huxley model of current flow through ionic channels in neural membrane.
-
Derivation of a bidomain model for bundles of myelinated
axons
C. Jerez-Hanckes, I. A. Martínez Ávila, Irina Pettersson, Volodymyr Rybalko
Nonlinear Analysis: Real World Applications - 2023 -
A Feedforward Neural Network for Modeling of Average Pressure Frequency
Response
Klas Pettersson, Andrei Karzhou, Irina Pettersson
Acoustics Australia - 2022 -
Multiscale analysis of myelinated
axons
Carlos Jerez-Hanckes, Isabel A. Martínez, Irina Pettersson, Volodymyr Rybalko
SEMA SIMAI Springer Series - 2021 -
Derivation of cable equation by multiscale analysis for a model of myelinated
axons
Carlos Jerez-Hanckes, Irina Pettersson, Volodymyr Rybalko
Discrete and Continuous Dynamical Systems - Series B - 2020