Image
kod på skärm
Breadcrumb

Conservation laws and quantum error correction

Research
Science and Information Technology

Guest seminar with Ben Brown from IBM Quantum.

Lecture,
Seminar
Date
18 Oct 2022
Time
10:00 - 11:00
Location
Kollektorn lecture room, MC2 building

Participants
Ben Brown, IBM Quantum

Abstract:

A quantum error-correcting code depends on a classical decoding algorithm that uses the outcomes of stabilizer measurements to determine the error that needs to be repaired. Likewise, the design of a decoding algorithm depends on the underlying physics of the quantum error-correcting code that it needs to decode. The surface code, for instance, can make use of the minimum-weight perfect-matching decoding algorithm to pair the defects that are measured by its stabilizers due to its underlying charge parity conservationsymmetry. In this talk I will argue that this perspective on decoding gives us a unifying principle to design decoding algorithms for exotic codes, as well as new decoding algorithms that are specialised to the noise that a code will experience. I will describe new decoders for exotic fracton codes we have designed using these principles. I will also discuss how the symmetries of a code change if we focus on restricted noise models, and how we have leveraged this observation to design high-threshold decoders for biased noise models. In addition to these examples, this talk about recent work on decoding the color code, where we found a high-performance decoder by investigating the defect conservation laws at the boundaries of the color code. Remarkably, our results show that we obtain an advantage by decoding this planar quantum error-correcting code by matching defects on a manifold that has the topology of a Moebius strip.