Hoppa till huvudinnehåll
Länkstig

Algoritmer för maskininlärning och slutledning

Kurs
Avancerad nivå
7,5 högskolepoäng (hp)
Studietakt
50%
Undervisningstid
Dag
Studieort
Göteborg
Undervisningsform
Campus
Undervisningsspråk
Engelska
Start/slut
-
Ansökan öppen
-
Anmälningskod
GU-28664
Ansökan stängd

Om utbildningen

I kursen diskuteras teori och tillämpning av algoritmer för maskininlärning och slutledning, utifrån ett AI perspektiv. I detta sammanhang betraktar vi "lärande" som slutledning från givna data eller erfarenheter som resulterar i en viss modell som generaliserar dessa uppgifter. Slutledning är att bestämma de önskade svaren eller åtgärder baserade på modellen.

Algoritmer av detta slag används vanligen i till exempel klassificeringsuppgifter (t.ex. teckenigenkänning, eller att förutsäga om en ny kund är kreditvärdig) och i expertsystem (t.ex., för medicinsk diagnostik). Ett nytt och kommersiellt viktig område är ?data mining?, där algoritmer används för att automatiskt identifiera speciellt intressant information och speciella relationer i stora kommersiella eller vetenskapliga databaser.

Kursen avser att ge en god förståelse för detta tvärvetenskapliga område, med tillräckligt djup för att använda och utvärdera tillgängliga metoder, och för att kunna följa aktuell vetenskaplig litteratur inom området. Under kursens gång kan vi diskutera eventuella problem med maskininlärningsmetoder, till exempel bias i träningsdata och säkerhet för autonoma agenter.

Följande begrepp behandlas i kursen:

  • Bayesiansk inlärning: likelihood, prior, posterior
  • Övervakad inlärning: Bayes-klassificerare, Logistic regression, Deep Learning, supportvektormaskiner
  • Oövervakad inlärning: Algoritmer för klustring, EM-algoritmen, mixture-modeller, kernel-metoder
  • Dolda Markov-modeller, MCMC
  • Reinforcement learning

Behörigheter och urval

Förkunskapskrav

För tillträde till kursen krävs att studenten ska ha en kandidatexamen. Specifikt krävs följande kunskaper: 7.5 hp i programmering (t.ex. DIT440 Introduktion till funktionell programmering, DIT042 Objektorienterad programmering, DIT012 Imperativ programmering med grundläggande objektorientering, eller motsvarande) 7.5 hp i datastrukturer (t.ex. DIT961 Datastrukturer, DIT181 Datastrukturer och algoritmer, eller motsvarande) 7.5 hp i grundläggande sannolikhetsteori och statistik (t.ex. MSG810 Matematisk statistik och diskret matematik, DIT861 Statistiska metoder för Data Science, eller motsvarande) 7.5 hp i linjär algebra (t.ex. MMGD20 Linjär algebra, eller motsvarande) 7.5 hp i analys (t.ex. MMGD30 Matematisk analys, eller motsvarande) Följande kunskapsnivå i Engelska krävs; Engelska 6/Engelska B eller motsvarande från ett erkänt internationellt test, t.ex. TOEFL, IELTS.

Urval

Högskolepoäng, max 225 hp.

För antagning till sommaren 2021 och framåt gäller följande urval: högskolepoäng, max 165 hp.