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Motivation

I Air pollution has been shown to have causal negative effects on
economic outcomes via health effects

I Need for empirical evidence so far to understand which environmental
policies would be socially desirable, but...

⇒ almost only from developed countries (Barwick et al., 2024b, REStud)

⇒ mortality focus - concentrates among elderly (Deryugina et al., 2019, AER)

⇒ traditionally focus on selected clinical conditions (He et al., 2019, JEEA)

I Currently. Dose-response functions from US/Europe to inform
policymaking in developing countries (Arceo et al., 2016, Econ. J.)

⇒ This paper. First economy-wide causal estimates of air pollution
impacts on hospital visits in a non-high-income setting
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Concerns with benefit-transfer methods: Examples

≠ Health outcomes
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This paper

I Questions
1. What is the impact of PM2.5 on overall nationwide hospitalizations?
2. How are the effects distributed across demographic groups?
3. Which are the underlying health conditions driving the effect?
4. Do we observe nonlinearities across baseline pollution?

I Outcomes
I Emergency room admissions in public hospitals by ICD-10 diagnosis

from the Ministry of Health in México

I Identification
I Quasi-random shocks in PM2.5 exposure due to dynamic variations in

the height of the planetary boundary layer (PBL) across municipalities

I Key findings:
1. 1 µg/m3 PM2.5 shock ⇒ 2.3% rise in hospitalizations for all conditions
2. The most affected demographic group is children on average
3. Due to respiratory conditions.. but also still unexplored health issues
4. Effects increase non-linearly with exposure levels... but diminishing rate
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Outline

1. Empirical setting

2. Identification strategy

3. Average causal effects

4. Heterogeneity analyses

5. Remarks



Contributions

I Health costs of pollution
I Health: Deschenes et al. (2017); Deryugina et al. (2019); Anderson

(2020); Barreca et al. (2021); Margaryan (2021); Graff Zivin et al.
(2023); Klauber et al. (2024); Barwick et al. (2024b)

I Limitations. (a) specific/narrow demographics (b) mortality effects
only; (c) policy shocks: low-emission zones; (d) high-income settings

I Private adaptations to environmental shocks
I Defensive expenditures: Deschenes et al. (2017); Sun et al. (2017);

Zhang and Mu (2018); Ito and Zhang (2020)
I Avoidance behaviours: Moretti and Neidell (2011); Zivin et al. (2011);

Chen et al. (2020)
I Role of information: Neidell (2009); Zivin and Neidell (2009); Janke

(2014); Mastromonaco (2015); Barwick et al. (2024a)
I Limitations. Heterogeneity (Drupp et al., 2025 for a recent review)
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Empirical setting: México

Relevance

I Universal healthcare, Seguro Popular ⇒
representative analysis by demographics
(cf. Cohen and Dechezleprêtre, 2022)

I ≈ 70.9% of the population (≈ 85M) has
public healthcare (INEGI, 2020)

I Nationwide digital records of health
services in all public hospitals

I Large heterogeneity in PM2.5 pollution to
leverage (⇒ 1.5 µg/m3 - 122 µg/m3)
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Main data sources Map of municipalities

Hospitalizations by 
ICD-10 code

Ministry of Health

Frequency: Daily

Detailed information 
at the admission 
level on hospital 
visits from the 

health information 
system of the 

Mexican Health 
Ministry 

(from 2008 onward)

Satellite-based 
PM2.5 estimates

Van Donkelaar et al.

Frequency: Monthly

0.01 X 0.01° gridded 
values of monthly 
PM2.5 estimates 

combining aerosol 
optical depth (AOD) 

data from NASA 
with a chemical 
transport model

 

Spatial matching process → Municipality-by-month estimation dataset 
  (2008 -2022)

Weather 
data

ECMWF

Frequency: Hourly

Re-analysis 
estimates of 

weather variables, 
such as air 

temperature, 
precipitation, and 

atmospheric 
pressure from the 
ERA5 data product

Planetary boundary 
layer height

ECMWF

Frequency: Hourly

Re-analysis 
estimates of hourly 

variation in the 
planetary boundary 

layer height from 
the ERA5 data 

product

6 / 21



Descriptive statistics (selected)

Average Standard Deviation Maximum Minimum Units

Admission Rates
General 157.31 188.26 4273.71 0.00 per 10,000 people
Male 117.74 151.43 3332.14 0.00 per 10,000 people
Female 194.78 228.96 5172.77 0.00 per 10,000 people
Age 0-12 166.03 232.06 4367.28 0.00 per 10,000 people
Age 12-20 152.22 181.13 4395.47 0.00 per 10,000 people
Age 20-40 183.55 215.80 5208.89 0.00 per 10,000 people
Age 40-60 116.33 160.36 3044.87 0.00 per 10,000 people
Age 60-80 148.93 216.60 3746.16 0.00 per 10,000 people
Age 80-130 224.57 332.84 6698.20 0.00 per 10,000 people
Population 148841.70 255942.80 1985601.91 1037.00 per 10,000 people

Main conditions
Respiratory/Cardiovascular 34.45 49.12 1035.16 0.00 per 10,000 people
External Causes 25.46 31.23 871.54 0.00 per 10,000 people
Obstetric 14.03 24.20 596.09 0.00 per 10,000 people
Digestive 12.55 15.41 327.27 0.00 per 10,000 people
Infectious 12.50 20.55 810.19 0.00 per 10,000 people
Abnormal Clinical Findings 11.79 18.75 730.69 0.00 per 10,000 people
Eye/Ear 2.83 4.88 129.26 0.00 per 10,000 people
Rest of Conditions 49.73 65.32 1336.04 0.00 per 10,000 people

Weather
Temperature 19.95 5.01 37.03 3.56 C
Dew Temperature 12.35 7.09 25.62 -12.07 C
Rain 35.71 42.48 639.36 0 m3/m2

Air Pollution
PM2.5 16.46 7.58 121.64 1.52 µgm3

PM2.5 Weighted 17.29 7.52 102.83 2.02 µgm3
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Endogeneity: e.g., Residential sorting

See for example Chay and Greenstone (2005); Lee and Lin (2018); Heblich et al. (2021).
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Addressing endogeneity: Previous literature

⇒ Two remarks: (i) low-frequency instruments; and (ii) first stage interpretability

Airport congestion 
Schlenker and Walker (2016)

Volcanic eruptions 
Halliday et al. (2019)

Public transport strikes 
Knittel et al. (2016)

Boat traffic variation 
Moretti and Neidell (2011)

Wind patterns 
Deryugina et al. (2019)

Economic recessions 
Chay & Greenstone (2003)
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Estimation strategy: IV approach
Planetary boundary layer height and air pollution

a) Low PBLH conditions b) High PBLH conditions

See Schwartz et al. (2017); Godzinski and Castillo (2021); Kögel (2022); Dechezleprêtre and Aranciba (2024).
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Dynamic variation in the PBLH

Credits to NASA’s Goddard Space Flight Center Scientific Visualization Studio
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Instrumental variable

I Definition. Arithmetic mean1 of the PBLH of all hours within each day for each
municipality V variation in monthly-weighted-average-by-municipality

I Relevance. We divide PBLH into five-percentile intervals and estimate the average
PM2.5 while accounting for fixed effects for each municipality
⇒ The difference between the lowest and highest five-percentile intervals is 32%

1We also estimate the maximum, minimum, and standard deviation of the PBLH for robustness exercises.
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Identification strategy Reverse causality?

⇒ High-dimensional Fixed-effects Poisson Pseudo-Maximum Likelihood Estimator
+ bootstrapped nonparametric standard errors to account for using fitted values in

the econometric design (Lin and Wooldridge, 2019)

PM2.5ct = ωct ×

[
βPBLHct + γX ′ct + δct + φcy + εct

]
(1)

ERct = ωct ×

[
exp

(
β ˆPM2.5ct + γX ′ct + δct + φcy

)
+ εct

]
(2)

− ˆPM2.5ct : average value of PM2.5 for municipality c at time t

− ERct : number of emergency room visits for municipality c at time t

− X ′jt : vector of controls
− δcm: municipality-by-month-of-the-year fixed effects
− φcy : municipality x year, y , fixed effects
− εct : idiosyncratic error term
− ωct : weights reflecting the population in each municipality c at time t
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Average causal effects on hospitalization visits Morbidity interpretation

Naive Less naive Baseline

0.004*** 0.008*** 0.023***
(0.002) (0.002) (0.006)

Fitted Statistics
R2 1.019 1.016 1.006
# Obs 84034 84034 83666
# Municipalities 648 648 648
# Periods 155 155 155
F.Stat (first stage) 71.744 101.124 100.328
Mean admission rate per 10k 167.59 167.59 167.59
Average municipal population 148.793 148.793 148.793

Fixed Effects
Municipality X X X
Year X X
Month X X
Municipality-by-month X
Municipality x Year X

Controls
Weather X X
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Putting magnitudes into perspective

I Simple linear interpolation based on our estimates to assess the costs of PM2.5

concentrations (17 mg/m3) relative to WHO’s recommended level of 10 ug/m3

I From the Mexican Health Ministry: material and human costs associated with
each admission → 4,200 MXP

Table 1: Direct morbidity costs associated with exceeding WHO standards for PM2.5

United States (Deryugina et al., 2019) Our study: Mexico China (Barwick et al., 2024)

0.25% 0.5% 1.5%

⇒ Previous evaluations using the benefit-transfer approach may underestimate the
morbidity costs of air pollution by as much as ∼ 2 - 6 times in non-OECD
countries.
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Heterogeneity by demographics
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Heterogeneity by gender
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Heterogeneity by diagnosis I
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Heterogeneity by diagnosis II

ICD-10 Code Estimate F-Value #Obs PR2 Cor2 MRate Pop PM2.5

Respiratory 0.0911*** 100.33 82507 1.02 0.88 30.7 148793.06 17.29
(0.0107)

Eye and ear 0.0286*** 110.71 77647 1.14 0.87 3.1 148793.06 17.29
(0.0079)

Abnormal clinical findings 0.0228** 110.71 78949 1.03 0.87 12.4 148793.06 17.29
(0.0107)

Infectious 0.0175* 110.71 79217 1.03 0.89 13.7 148793.06 17.29
(0.0093)

Perinatal 0.0151 100.33 72519 6.02 0.83 0.45 148793.06 17.29
(0.0190)

Other 0.0141* 110.71 79052 1.01 0.95 23.5 148793.06 17.29
(0.0084)

Endocrine 0.0137 110.71 79080 1.06 0.88 5.2 148793.06 17.29
(0.0108)

Obstetric 0.0131 100.33 81692 1.02 0.93 14.4 148793.06 17.29
(0.0105)

Nervous 0.0120 100.33 81483 1.22 0.83 1.9 148793.06 17.29
(0.0098)

External causes 0.0114* 110.71 79802 1.01 0.94 26.5 148793.06 17.29
(0.0066)

Neoplasms 0.0104 100.33 77861 1.55 0.85 0.85 148793.06 17.29
(0.0146)

Skin 0.0083 100.33 81154 1.13 0.88 3.2 148793.06 17.29
(0.0091)

Digestive 0.0048 110.71 79437 1.02 0.92 13.4 148793.06 17.29
(0.0069)

Muskuloskeletal 0.0032 110.71 78507 1.07 0.91 5.03 148793.06 17.29
(0.0072)

Genitourinary 0.0031 110.71 79351 1.03 0.93 10.6 148793.06 17.29
(0.0065)

Circulatory 0.0001 110.71 79218 1.06 0.89 5.8 148793.06 17.29
(0.0085)

Mental and behavioral -0.0159 110.71 78813 1.12 0.84 2.3 148793.06 17.29
(0.0101)
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Nonlinearities: Heterogeneous effects by baseline PM2.5

Baseline Above Median Above Highest Quartile
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H0: all three effects equal Wald = 15.960, p < 0.001
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Discussion

I First economy-wide causal estimates of air pollution impacts on
hospital visits in a non-high-income context

I Focusing on mortality only might underestimate the health impacts on
other demographics (e.g., especially pediatric and younger patients)

I Air pollution exposure might exacerbate infectious diseases and other
health conditions beyond those traditionally investigated

I Previous evaluations based on benefit-transfer may largely
underestimate pollution-driven morbidity costs
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Municipalities Back
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Reverse causality Back

I Concern? Higher pollution levels can influence atmospheric mixing by altering
radiative forcing (Bond et al., 2013), which could then, in theory, affect the PBLH.
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Reverse causality Back

I Modeling evidence from Petäjä et al. (2016): Assuming baseline PM of 100, 200
or 250 µg m−3, the corresponding strength of the feedback (i..e, % PBLH
reduction) is about 1, 2 and 5% for ∆PM < 10 µg m−3, about 3, 5 and 12% for
∆PM of 20 µg m−3, and 6, 13 and >50% for ∆PM of 40 µg m−3.

⇒ Within our setting, reverse causality can therefore plausibly be ruled out.
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Average causal effects on hospitalization visits by type Back

Home Hospitalization Death Unspecified

Second stage β from Eq. 2
PM2.5 (µg/m3) 0.03008*** 0.01561 -0.02597 -0.10523

(0.00543) (0.00962) (0.01910) (0.06714)

Model Statistics
Observations 83506 83076 62637 76994
Municipalities 648 648 648 648
F-Value (first stage) 100.33 100.33 100.33 100.33
Admission Rate (per 10k) 1419.75 211.20 1.71 43.25
Avg. Population 148,793 148,793 148,793 148,793

Fixed Effects
Municipality × month-of-the-year X X X X
Municipality × year X X X X

Controls
Weather variables X X X X
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Nonlinearities: Heterogeneous effects by baseline PM2.5

Table 2: Heterogeneous effects by PM2.5 average exposure levels

Median Split Quartile Split

PM2.5 ≤ Median PM2.5 > Median PM2.5 ≤ Q1 Q1 < PM2.5 ≤ Q2 Q2 < PM2.5 ≤ Q3 PM2.5 > Q3

0.001 0.049*** -0.014 0.018 0.041*** 0.056***
(0.007) (0.007) (0.010) (0.023) (0.015) (0.010)

Model Statistics
F-Value 52.47 94.00 64.41 10.66 18.98 87.28
# Obs. 40530 43136 20046 20484 21970 21166
Average PM2.5 13.12 21.23 10.48 15.70 19.16 23.38
Population 113377.06 182208.82 130048.90 97019.36 120593.88 246093.54
# Municipalities 324 324 162 162 162 162
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Nonlinearities: Heterogeneous effects by baseline PM2.5
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