

When the Boundary Layer Drops

Air Quality and Healthcare Use in Mexico

Piero Basaglia^{1,2} Luis Sarmiento^{3,4,5}

¹Bordeaux School of Economics, CNRS, INRAE

²CESifo, Munich

³ETH Zurich ⁴Banco de México

⁵EIEE

Malmsten Workshop in Sustainability Economics

Göteborg, 23rd January 2026

All eyes on Davos...

Short term (2 years)

1. Geoeconomic confrontation
2. Misinformation and disinformation
3. Societal polarization
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

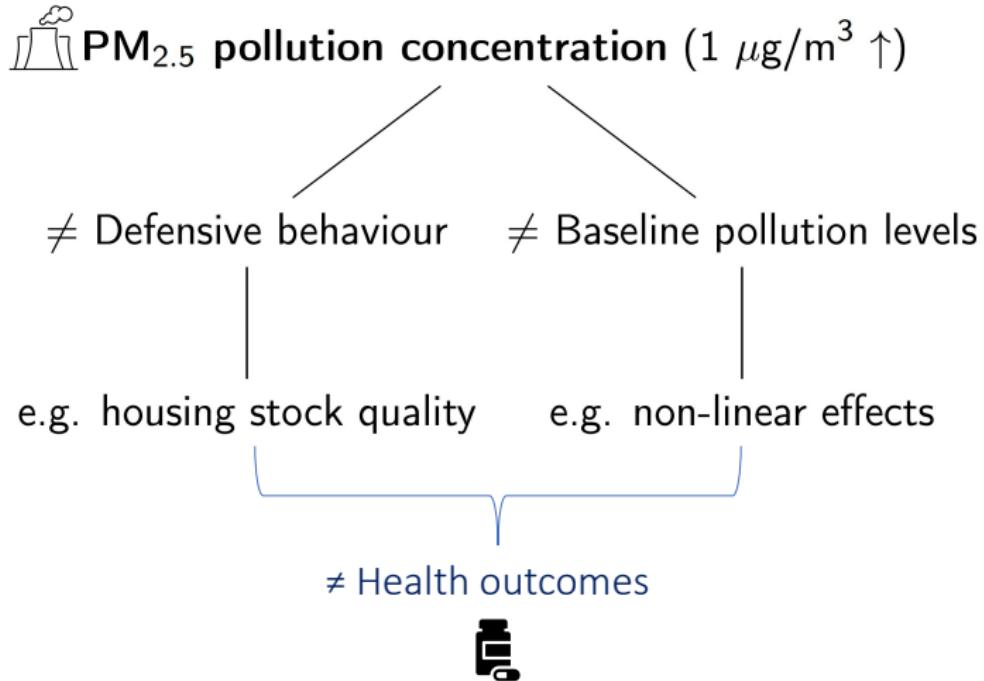
Long term (10 years)

1. Extreme weather events
2. Biodiversity loss and ecosystem collapse
3. Critical change to Earth systems
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.

All eyes on Davos...

Short term (2 years)

1. Geoeconomic confrontation
2. Misinformation and disinformation
3. Societal polarization
- 4.
- 5.
- 6.
- 7.
- 8.
9. Pollution
- 10.


Long term (10 years)

1. Extreme weather events
2. Biodiversity loss and ecosystem collapse
3. Critical change to Earth systems
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
10. Pollution

Motivation

- ▶ Air pollution has been shown to have causal negative effects on economic outcomes via health effects
- ▶ Need for empirical evidence so far to understand which environmental policies would be socially desirable, but...
 - ⇒ almost only from developed countries (Barwick et al., 2024b, *REStud*)
 - ⇒ mortality focus - concentrates among elderly (Deryugina et al., 2019, *AER*)
 - ⇒ traditionally focus on selected clinical conditions (He et al., 2019, *JEEA*)
- ▶ **Currently.** Dose-response functions from US/Europe to inform policymaking in developing countries (Arceo et al., 2016, *Econ. J.*)
- ⇒ **This paper.** First economy-wide causal estimates of air pollution impacts on hospital visits in a non-high-income setting

Concerns with benefit-transfer methods: Examples

This paper

► Questions

1. What is the impact of PM_{2.5} on overall nationwide hospitalizations?
2. How are the effects distributed across demographic groups?
3. Which are the underlying health conditions driving the effect?
4. Do we observe nonlinearities across baseline pollution?

► Outcomes

- Emergency room admissions in public hospitals by ICD-10 diagnosis from the Ministry of Health in México

► Identification

- Quasi-random shocks in PM_{2.5} exposure due to dynamic variations in the height of the planetary boundary layer (PBL) across municipalities

► Key findings:

1. $1 \mu\text{g}/\text{m}^3$ PM_{2.5} shock $\Rightarrow 2.3\%$ rise in hospitalizations for all conditions
2. The most affected demographic group is children on average
3. Due to respiratory conditions.. but also still unexplored health issues
4. Effects increase non-linearly with exposure levels... but diminishing rate

Outline

1. Empirical setting
2. Identification strategy
3. Average causal effects
4. Heterogeneity analyses
5. Remarks

Contributions

- ▶ **Health costs of pollution**
 - ▶ **Health:** Deschenes et al. (2017); Deryugina et al. (2019); Anderson (2020); Barreca et al. (2021); Margaryan (2021); Graff Zivin et al. (2023); Klauber et al. (2024); Barwick et al. (2024b)
 - ▶ **Limitations.** (a) specific/narrow demographics (b) mortality effects only; (c) policy shocks: low-emission zones; (d) high-income settings
- ▶ **Private adaptations to environmental shocks**
 - ▶ **Defensive expenditures:** Deschenes et al. (2017); Sun et al. (2017); Zhang and Mu (2018); Ito and Zhang (2020)
 - ▶ **Avoidance behaviours:** Moretti and Neidell (2011); Zivin et al. (2011); Chen et al. (2020)
 - ▶ **Role of information:** Neidell (2009); Zivin and Neidell (2009); Janke (2014); Mastromonaco (2015); Barwick et al. (2024a)
 - ▶ **Limitations.** Heterogeneity (Drupp et al., 2025 for a recent review)

Empirical setting: México

Relevance

- ▶ Universal healthcare, *Seguro Popular* ⇒ representative analysis by demographics (cf. Cohen and Dechezleprêtre, 2022)
- ▶ $\approx 70.9\%$ of the population ($\approx 85M$) has public healthcare (INEGI, 2020)
- ▶ Nationwide digital records of health services in all public hospitals
- ▶ Large heterogeneity in $\text{PM}_{2.5}$ pollution to leverage ($\Rightarrow 1.5 \mu\text{g}/\text{m}^3 - 122 \mu\text{g}/\text{m}^3$)

Main data sources

Map of municipalities

Hospitalizations by ICD-10 code Ministry of Health

Frequency: Daily

Detailed information at the admission level on **hospital visits** from the health information system of the Mexican Health Ministry (from 2008 onward)

Satellite-based PM2.5 estimates Van Donkelaar et al.

Frequency: Monthly

0.01 X 0.01° gridded values of monthly PM2.5 estimates combining aerosol optical depth (AOD) data from NASA with a chemical transport model

Weather data ECMWF

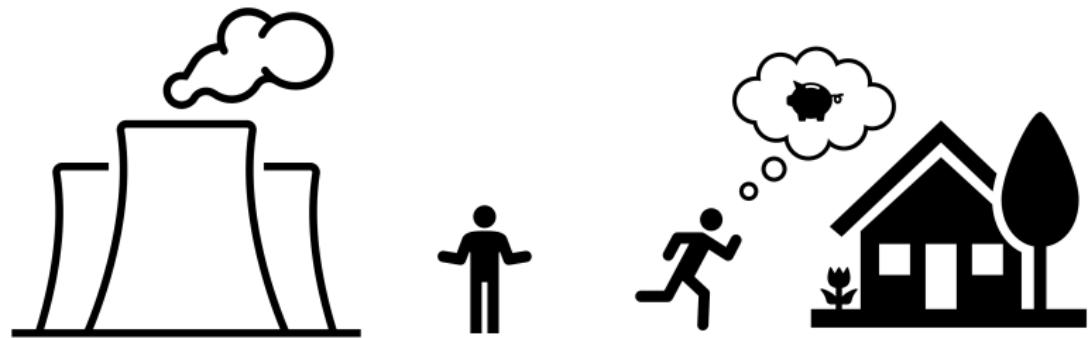
Frequency: Hourly

Re-analysis estimates of **weather variables**, such as air temperature, precipitation, and atmospheric pressure from the ERA5 data product

Planetary boundary layer height ECMWF

Frequency: Hourly

Re-analysis estimates of hourly variation in the **planetary boundary layer height** from the ERA5 data product



Spatial matching process → **Municipality-by-month estimation dataset (2008 -2022)**

Descriptive statistics (selected)

	Average	Standard Deviation	Maximum	Minimum	Units
Admission Rates					
General	157.31	188.26	4273.71	0.00	per 10,000 people
Male	117.74	151.43	3332.14	0.00	per 10,000 people
Female	194.78	228.96	5172.77	0.00	per 10,000 people
Age 0-12	166.03	232.06	4367.28	0.00	per 10,000 people
Age 12-20	152.22	181.13	4395.47	0.00	per 10,000 people
Age 20-40	183.55	215.80	5208.89	0.00	per 10,000 people
Age 40-60	116.33	160.36	3044.87	0.00	per 10,000 people
Age 60-80	148.93	216.60	3746.16	0.00	per 10,000 people
Age 80-130	224.57	332.84	6698.20	0.00	per 10,000 people
Population	148841.70	255942.80	1985601.91	1037.00	per 10,000 people
Main conditions					
Respiratory/Cardiovascular	34.45	49.12	1035.16	0.00	per 10,000 people
External Causes	25.46	31.23	871.54	0.00	per 10,000 people
Obstetric	14.03	24.20	596.09	0.00	per 10,000 people
Digestive	12.55	15.41	327.27	0.00	per 10,000 people
Infectious	12.50	20.55	810.19	0.00	per 10,000 people
Abnormal Clinical Findings	11.79	18.75	730.69	0.00	per 10,000 people
Eye/Ear	2.83	4.88	129.26	0.00	per 10,000 people
Rest of Conditions	49.73	65.32	1336.04	0.00	per 10,000 people
Weather					
Temperature	19.95	5.01	37.03	3.56	C
Dew Temperature	12.35	7.09	25.62	-12.07	C
Rain	35.71	42.48	639.36	0	m^3/m^2
Air Pollution					
PM2.5	16.46	7.58	121.64	1.52	$\mu g m^3$
PM2.5 Weighted	17.29	7.52	102.83	2.02	$\mu g m^3$

Endogeneity: e.g., Residential sorting

See for example Chay and Greenstone (2005); Lee and Lin (2018); Heblich et al. (2021).

Addressing endogeneity: Previous literature

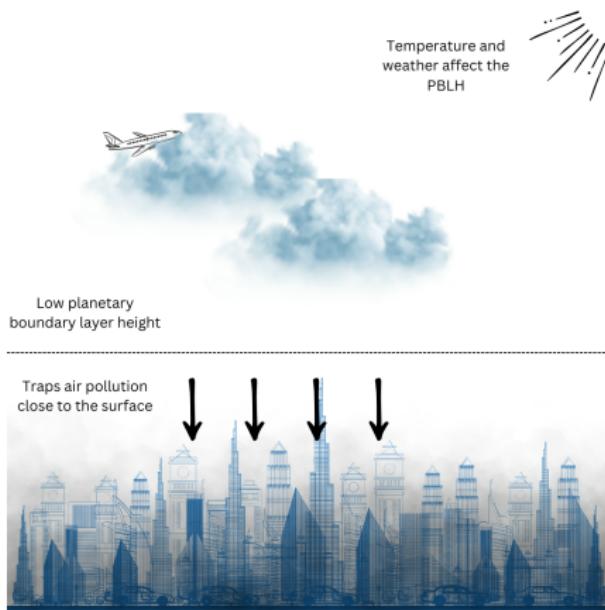
⇒ Two remarks: (i) low-frequency instruments; and (ii) first stage interpretability

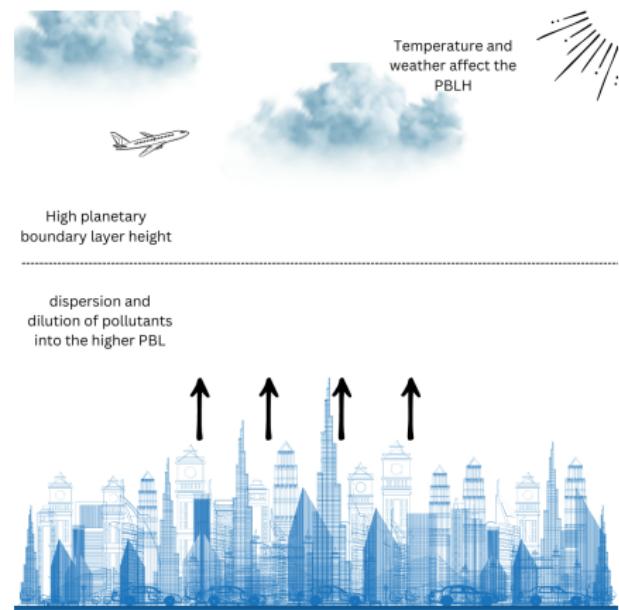
Airport congestion
Schlenker and Walker (2016)

Volcanic eruptions
Halliday et al. (2019)

Public transport strikes
Knittel et al. (2016)

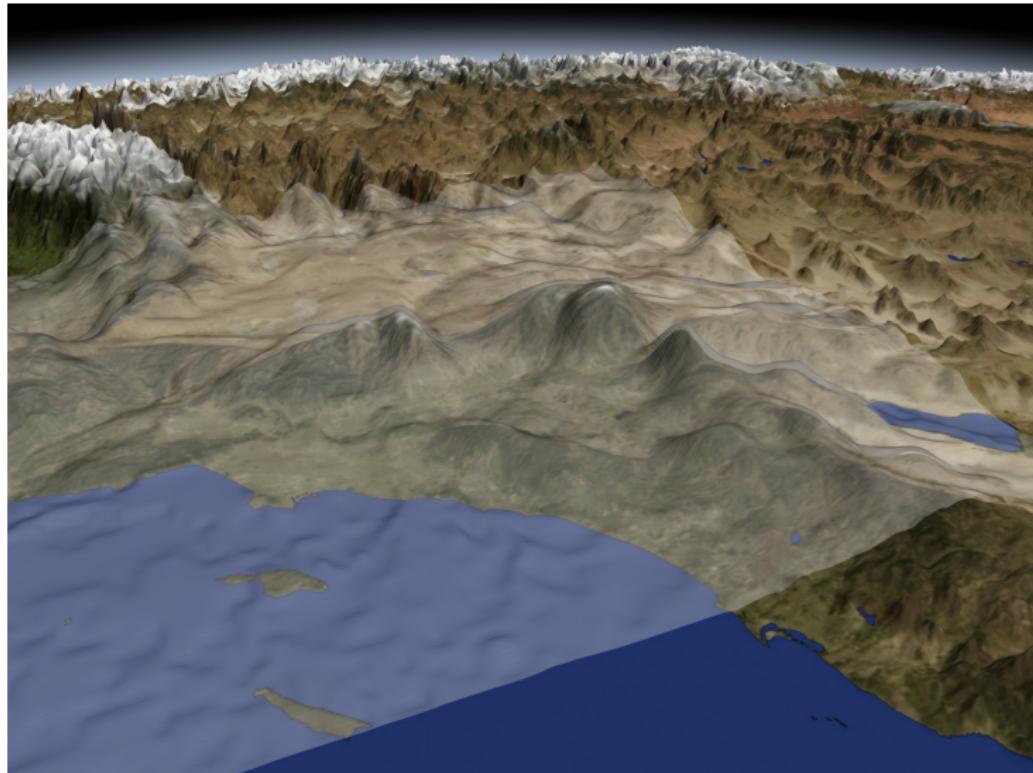
Wind patterns
Deryugina et al. (2019)


Boat traffic variation
Moretti and Neidell (2011)

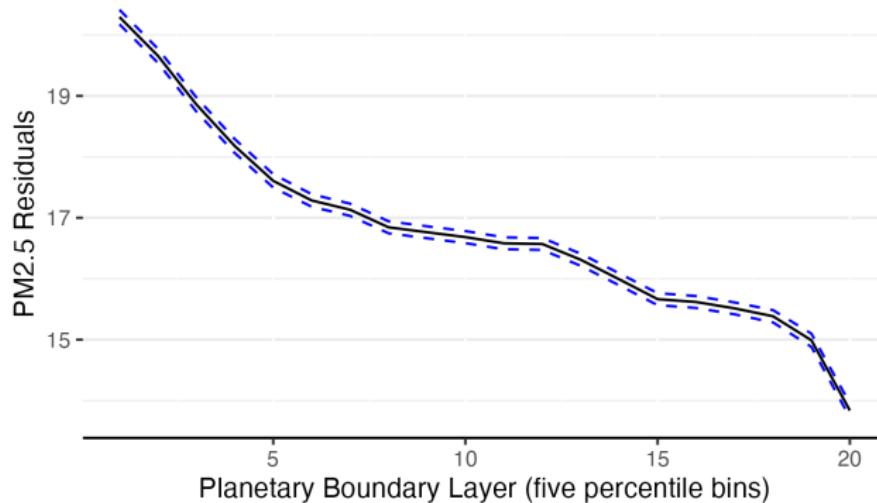

Economic recessions
Chay & Greenstone (2003)

Estimation strategy: IV approach

Planetary boundary layer height and air pollution



a) Low PBLH conditions


b) High PBLH conditions

Dynamic variation in the PBLH

Instrumental variable

- ▶ **Definition.** Arithmetic mean¹ of the PBLH of all hours within each day for each municipality \Rightarrow variation in monthly-weighted-average-by-municipality
- ▶ **Relevance.** We divide PBLH into five-percentile intervals and estimate the average PM2.5 while accounting for fixed effects for each municipality
 - \Rightarrow The difference between the lowest and highest five-percentile intervals is 32%

¹We also estimate the maximum, minimum, and standard deviation of the PBLH for robustness exercises.

Identification strategy

Reverse causality?

- ⇒ High-dimensional Fixed-effects Poisson Pseudo-Maximum Likelihood Estimator
- + bootstrapped nonparametric standard errors to account for using fitted values in the econometric design (Lin and Wooldridge, 2019)

$$PM2.5_{ct} = \omega_{ct} \times \left[\beta PBLH_{ct} + \gamma X'_{ct} + \delta_{ct} + \phi_{cy} + \epsilon_{ct} \right] \quad (1)$$

$$ER_{ct} = \omega_{ct} \times \left[\exp \left(\beta \hat{PM2.5}_{ct} + \gamma X'_{ct} + \delta_{ct} + \phi_{cy} \right) + \epsilon_{ct} \right] \quad (2)$$

- $\hat{PM2.5}_{ct}$: average value of $PM_{2.5}$ for municipality c at time t
- ER_{ct} : number of emergency room visits for municipality c at time t
- X'_{jt} : vector of controls
- δ_{cm} : municipality-by-month-of-the-year fixed effects
- ϕ_{cy} : municipality x year, y , fixed effects
- ϵ_{ct} : idiosyncratic error term
- ω_{ct} : weights reflecting the population in each municipality c at time t

	Naive	Less naive	Baseline
	0.004*** (0.002)	0.008*** (0.002)	0.023*** (0.006)
<i>Fitted Statistics</i>			
R2	1.019	1.016	1.006
# Obs	84034	84034	83666
# Municipalities	648	648	648
# Periods	155	155	155
F.Stat (first stage)	71.744	101.124	100.328
Mean admission rate per 10k	167.59	167.59	167.59
Average municipal population	148.793	148.793	148.793
<i>Fixed Effects</i>			
Municipality	✓	✓	✓
Year		✓	✓
Month		✓	✓
Municipality-by-month			✓
Municipality x Year			✓
<i>Controls</i>			
Weather		✓	✓

Putting magnitudes into perspective

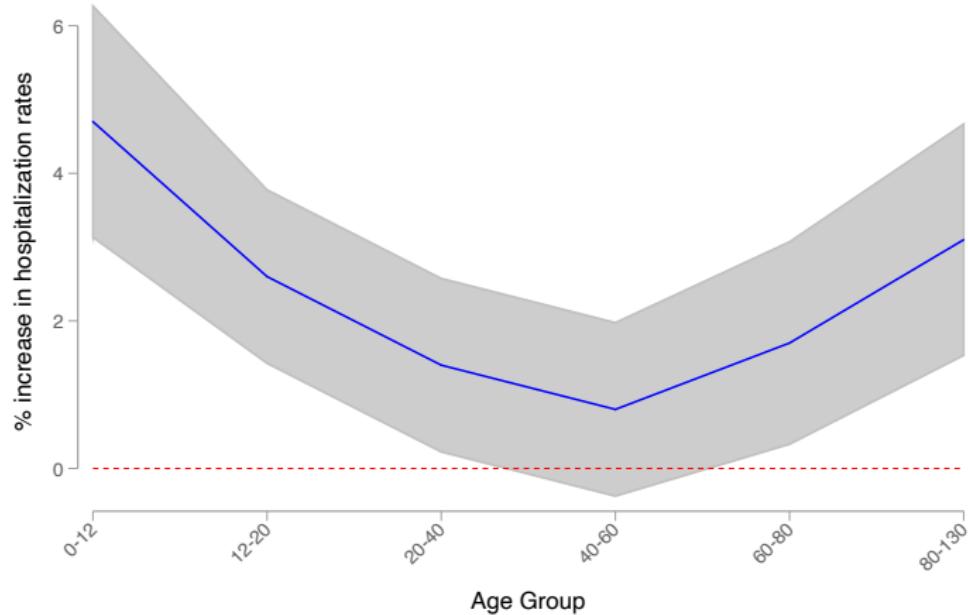
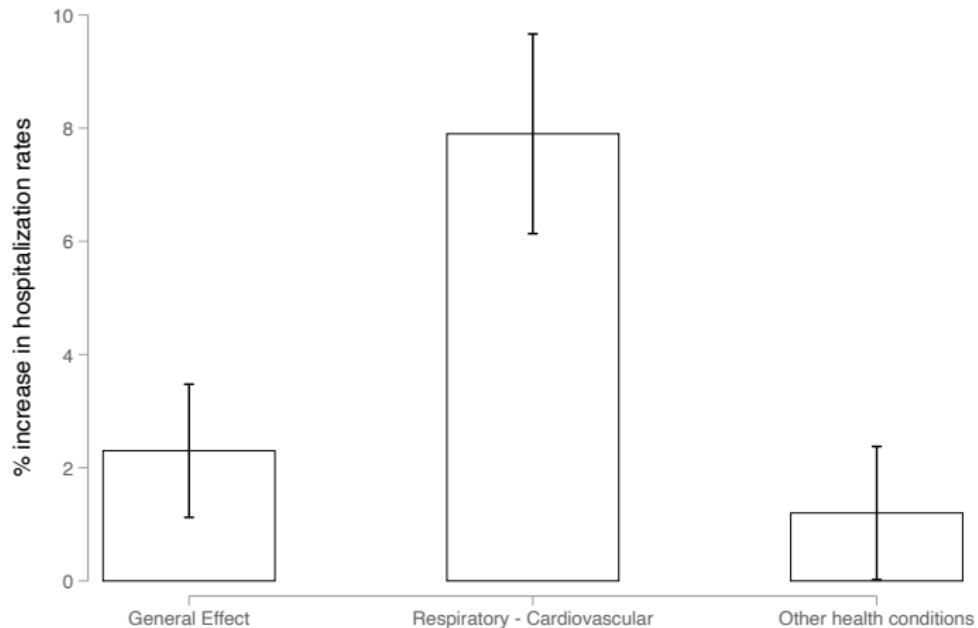

- ▶ Simple linear interpolation based on our estimates to assess the costs of PM_{2.5} concentrations (17 mg/m³) relative to WHO's recommended level of 10 ug/m³
- ▶ From the Mexican Health Ministry: material and human costs associated with each admission → 4,200 MXP

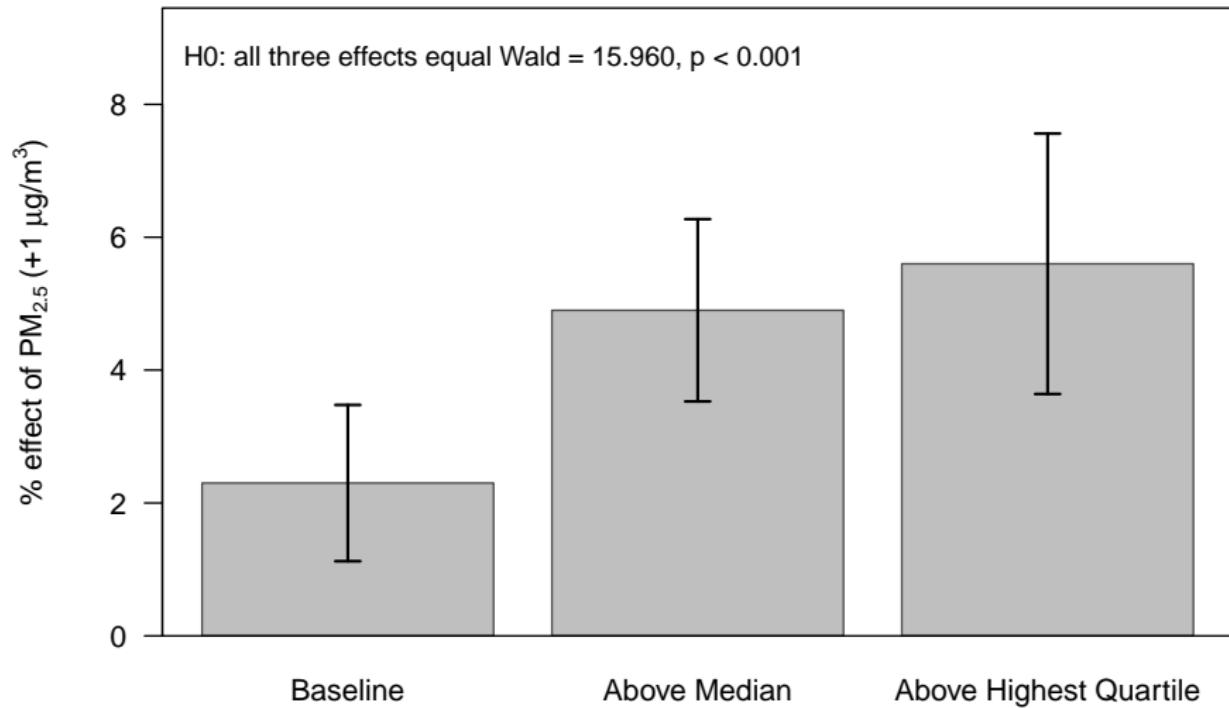
Table 1: Direct morbidity costs associated with exceeding WHO standards for PM_{2.5}

United States (Deryugina et al., 2019)	Our study: Mexico	China (Barwick et al., 2024)
0.25%	0.5%	1.5%

⇒ Previous evaluations using the benefit-transfer approach may **underestimate** the morbidity costs of air pollution **by as much as ~ 2 - 6 times** in non-OECD countries.


Heterogeneity by demographics

Heterogeneity by gender


Heterogeneity by diagnosis I

Heterogeneity by diagnosis II

ICD-10 Code	Estimate	F-Value	#Obs	PR2	Cor2	MRate	Pop	PM2.5
Respiratory	0.0911*** (0.0107)	100.33	82507	1.02	0.88	30.7	148793.06	17.29
Eye and ear	0.0286*** (0.0079)	110.71	77647	1.14	0.87	3.1	148793.06	17.29
Abnormal clinical findings	0.0228** (0.0107)	110.71	78949	1.03	0.87	12.4	148793.06	17.29
Infectious	0.0175* (0.0093)	110.71	79217	1.03	0.89	13.7	148793.06	17.29
Perinatal	0.0151 (0.0190)	100.33	72519	6.02	0.83	0.45	148793.06	17.29
Other	0.0141* (0.0084)	110.71	79052	1.01	0.95	23.5	148793.06	17.29
Endocrine	0.0137 (0.0108)	110.71	79080	1.06	0.88	5.2	148793.06	17.29
Obstetric	0.0131 (0.0105)	100.33	81692	1.02	0.93	14.4	148793.06	17.29
Nervous	0.0120 (0.0098)	100.33	81483	1.22	0.83	1.9	148793.06	17.29
External causes	0.0114* (0.0066)	110.71	79802	1.01	0.94	26.5	148793.06	17.29
Neoplasms	0.0104 (0.0146)	100.33	77861	1.55	0.85	0.85	148793.06	17.29
Skin	0.0083 (0.0091)	100.33	81154	1.13	0.88	3.2	148793.06	17.29
Digestive	0.0048 (0.0069)	110.71	79437	1.02	0.92	13.4	148793.06	17.29
Muskuloskeletal	0.0032 (0.0072)	110.71	78507	1.07	0.91	5.03	148793.06	17.29
Genitourinary	0.0031 (0.0065)	110.71	79351	1.03	0.93	10.6	148793.06	17.29
Circulatory	0.0001 (0.0085)	110.71	79218	1.06	0.89	5.8	148793.06	17.29
Mental and behavioral	-0.0159 (0.0101)	110.71	78813	1.12	0.84	2.3	148793.06	17.29

Nonlinearities: Heterogeneous effects by baseline PM_{2.5}

Discussion

- ▶ First economy-wide causal estimates of air pollution impacts on hospital visits in a non-high-income context
- ▶ Focusing on mortality only might underestimate the health impacts on other demographics (e.g., especially pediatric and younger patients)
- ▶ Air pollution exposure might exacerbate infectious diseases and other health conditions beyond those traditionally investigated
- ▶ Previous evaluations based on benefit-transfer may largely underestimate pollution-driven morbidity costs

References |

Anderson, M. L. (2020). As the wind blows: The effects of long-term exposure to air pollution on mortality. *Journal of the European Economic Association*, 18(4):1886–1927.

Arceo, E., Hanna, R., and Oliva, P. (2016). Does the effect of pollution on infant mortality differ between developing and developed countries? evidence from mexico city. *The Economic Journal*, 126(591):257–280.

Barreca, A. I., Neidell, M., and Sanders, N. J. (2021). Long-run pollution exposure and mortality: Evidence from the acid rain program. *Journal of Public Economics*, 200:104440.

Barwick, P. J., Li, S., Lin, L., and Zou, E. Y. (2024a). From fog to smog: The value of pollution information. Technical Report 5.

Barwick, P. J., Li, S., Rao, D., and Zahur, N. B. (2024b). The healthcare cost of air pollution: Evidence from the world's largest payment network. *Review of Economics and Statistics*, pages 1–52.

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. *Journal of geophysical research: Atmospheres*, 118(11):5380–5552.

Chay, K. Y. and Greenstone, M. (2005). Does air quality matter? evidence from the housing market. *Journal of political Economy*, 113(2):376–424.

Chen, S., Chen, Y., Lei, Z., and Tan-Soo, J.-S. (2020). Impact of air pollution on short-term movements: evidence from air travels in china. *Journal of Economic Geography*, 20(4):939–968.

References II

Cohen, F. and Dechezleprêtre, A. (2022). Mortality, temperature, and public health provision: evidence from mexico. *American Economic Journal: Economic Policy*, 14(2):161–192.

Dechezleprêtre, A. and Aranciba, V. V. (2024). Air pollution and labour productivity: Large-scale micro evidence from europe. Unpublished manuscript.

Deryugina, T., Heutel, G., Miller, N. H., Molitor, D., and Reif, J. (2019). The mortality and medical costs of air pollution: Evidence from changes in wind direction. *American Economic Review*, 109(12):4178–4219.

Deschenes, O., Greenstone, M., and Shapiro, J. S. (2017). Defensive investments and the demand for air quality: Evidence from the nox budget program. *American Economic Review*, 107(10):2958–2989.

Drupp, M. A., Kornek, U., Meya, J., and Sager, L. (2025). The economics of inequality and the environment. *Journal of Economic Literature*.

Godzinski, A. and Castillo, M. S. (2021). Disentangling the effects of air pollutants with many instruments. *Journal of Environmental Economics and Management*, 109:102489.

Graff Zivin, J., Neidell, M., Sanders, N. J., and Singer, G. (2023). When externalities collide: Influenza and pollution. *American Economic Journal: Applied Economics*, 15(2):320–351.

He, J., Gouveia, N., and Salvo, A. (2019). External effects of diesel trucks circulating inside the sao paulo megacity. *Journal of the European Economic Association*, 17(3):947–989.

Heblich, S., Trew, A., and Zylberberg, Y. (2021). East-side story: Historical pollution and persistent neighborhood sorting. *Journal of Political Economy*, 129(5):1508–1552.

References III

INEGI (2020). Censo de población y vivienda 2020. Accessed: 2024-11-04.

Ito, K. and Zhang, S. (2020). Willingness to pay for clean air: Evidence from air purifier markets in china. *Journal of Political Economy*, 128(5):1627–1672.

Janke, K. (2014). Air pollution, avoidance behaviour and children's respiratory health: evidence from england. *Journal of health economics*, 38:23–42.

Klauber, H., Holub, F., Koch, N., Pestel, N., Ritter, N., and Rohlf, A. (2024). Killing prescriptions softly: Low emission zones and child health from birth to school. *American Economic Journal: Economic Policy*, 16(2):220–248.

Kögel, C. (2022). The impact of air pollution on labour productivity in france. Available at SSRN 4541477.

Lee, S. and Lin, J. (2018). Natural amenities, neighbourhood dynamics, and persistence in the spatial distribution of income. *The Review of Economic Studies*, 85(1):663–694.

Lin, W. and Wooldridge, J. M. (2019). Testing and correcting for endogeneity in nonlinear unobserved effects models. In *Panel data econometrics*, pages 21–43. Elsevier.

Margaryan, S. (2021). Low emission zones and population health. *Journal of health economics*, 76:102402.

Mastromonaco, R. (2015). Do environmental right-to-know laws affect markets? capitalization of information in the toxic release inventory. *Journal of Environmental Economics and Management*, 71:54–70.

References IV

Moretti, E. and Neidell, M. (2011). Pollution, health, and avoidance behavior evidence from the ports of los angeles. *Journal of human Resources*, 46(1):154–175.

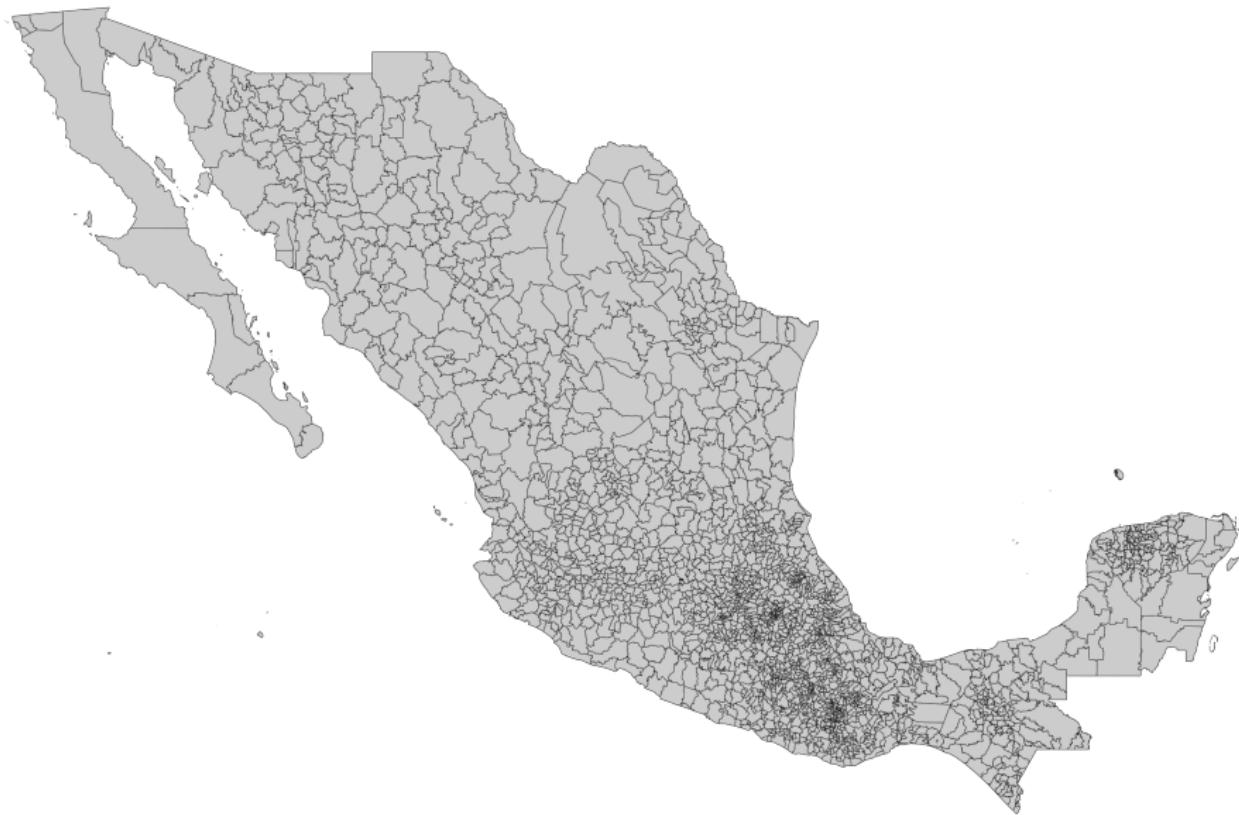
Neidell, M. (2009). Information, avoidance behavior, and health the effect of ozone on asthma hospitalizations. *Journal of Human resources*, 44(2):450–478.

Petäjä, T., Järvi, L., Kerminen, V.-M., Ding, A., Sun, J., Nie, W., Kujansuu, J., Virkkula, A., Yang, X., Fu, C., et al. (2016). Enhanced air pollution via aerosol-boundary layer feedback in china. *Scientific reports*, 6(1):18998.

Schwartz, J., Bind, M.-A., and Koutrakis, P. (2017). Estimating causal effects of local air pollution on daily deaths: effect of low levels. *Environmental health perspectives*, 125(1):23–29.

Sun, C., Kahn, M. E., and Zheng, S. (2017). Self-protection investment exacerbates air pollution exposure inequality in urban china. *Ecological economics*, 131:468–474.

Zhang, J. and Mu, Q. (2018). Air pollution and defensive expenditures: Evidence from particulate-filtering facemasks. *Journal of Environmental Economics and Management*, 92:517–536.


Zivin, J. G. and Neidell, M. (2009). Days of haze: Environmental information disclosure and intertemporal avoidance behavior. *Journal of Environmental Economics and Management*, 58(2):119–128.

Zivin, J. G., Neidell, M., and Schlenker, W. (2011). Water quality violations and avoidance behavior: Evidence from bottled water consumption. *American Economic Review*, 101(3):448–453.

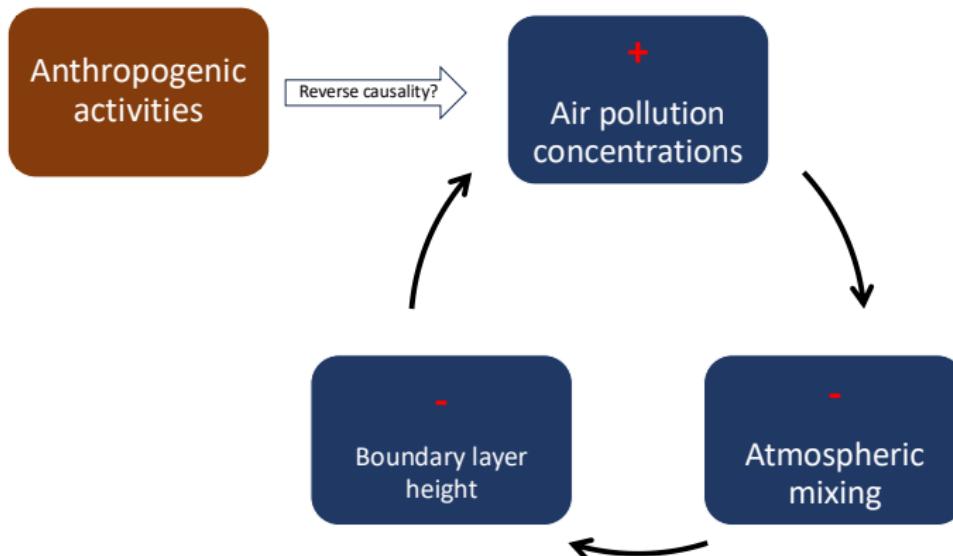
Appendix

Municipalities

[Back](#)

Reverse causality

[Back](#)


- ▶ **Concern?** Higher pollution levels can influence atmospheric mixing by altering radiative forcing (Bond et al., 2013), which could then, in theory, affect the PBLH.

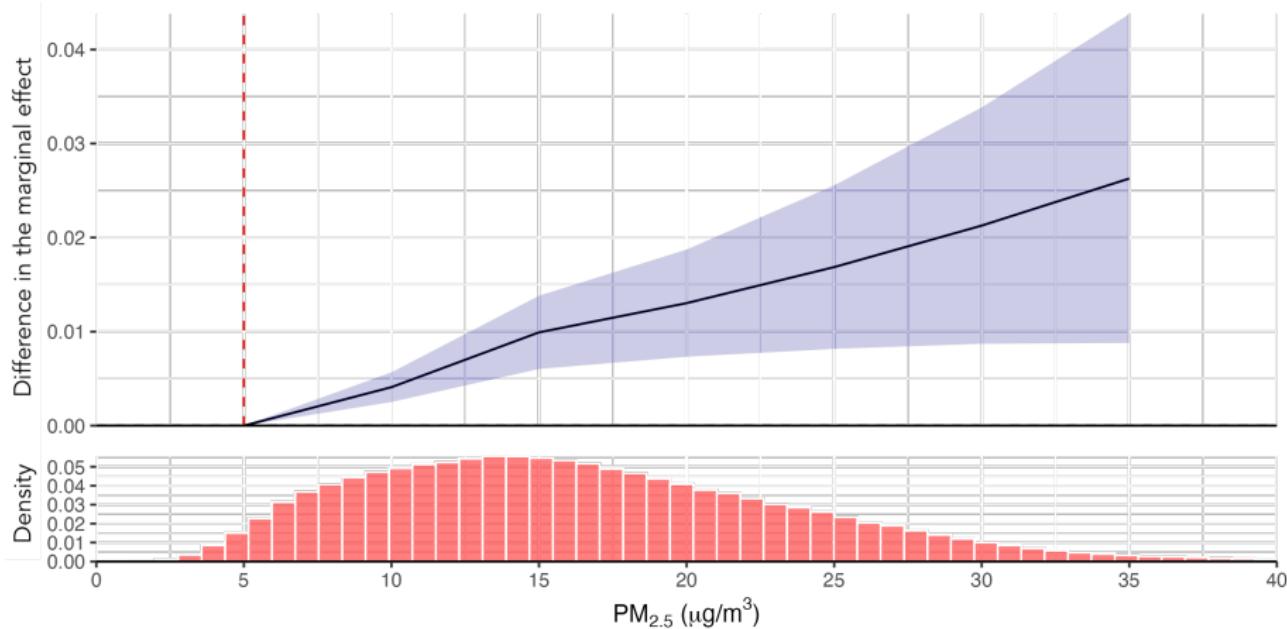
Reverse causality

[Back](#)

- **Modeling evidence from Petäjä et al. (2016):** Assuming baseline PM of 100, 200 or $250 \mu\text{g m}^{-3}$, the corresponding strength of the feedback (i.e, % PBLH reduction) is about 1, 2 and 5% for $\Delta\text{PM} < 10 \mu\text{g m}^{-3}$, about 3, 5 and 12% for ΔPM of $20 \mu\text{g m}^{-3}$, and 6, 13 and $>50\%$ for ΔPM of $40 \mu\text{g m}^{-3}$.
- ⇒ Within our setting, reverse causality can therefore plausibly be ruled out.

Average causal effects on hospitalization visits by type

[Back](#)


	Home	Hospitalization	Death	Unspecified
Second stage β from Eq. 2				
PM _{2.5} ($\mu\text{g}/\text{m}^3$)	0.03008*** (0.00543)	0.01561 (0.00962)	-0.02597 (0.01910)	-0.10523 (0.06714)
Model Statistics				
Observations	83506	83076	62637	76994
Municipalities	648	648	648	648
F-Value (first stage)	100.33	100.33	100.33	100.33
Admission Rate (per 10k)	1419.75	211.20	1.71	43.25
Avg. Population	148,793	148,793	148,793	148,793
Fixed Effects				
Municipality \times month-of-the-year	✓	✓	✓	✓
Municipality \times year	✓	✓	✓	✓
Controls				
Weather variables	✓	✓	✓	✓

Nonlinearities: Heterogeneous effects by baseline PM_{2.5}

Table 2: Heterogeneous effects by PM_{2.5} average exposure levels

Median Split		Quartile Split				
PM _{2.5} ≤ Median	PM _{2.5} > Median	PM _{2.5} ≤ Q ₁	Q ₁ < PM _{2.5} ≤ Q ₂	Q ₂ < PM _{2.5} ≤ Q ₃	PM _{2.5} > Q ₃	
0.001 (0.007)	0.049*** (0.007)	-0.014 (0.010)	0.018 (0.023)	0.041*** (0.015)	0.056*** (0.010)	
Model Statistics						
F-Value	52.47	94.00	64.41	10.66	18.98	87.28
# Obs.	40530	43136	20046	20484	21970	21166
Average PM _{2.5}	13.12	21.23	10.48	15.70	19.16	23.38
Population	113377.06	182208.82	130048.90	97019.36	120593.88	246093.54
# Municipalities	324	324	162	162	162	162

Nonlinearities: Heterogeneous effects by baseline PM_{2.5}

