

Do we discount money and the environment differently? Evidence from stated willingness to pay data

Malmsten Workshop 22-23 Jan

Mitesh Kataria

Joint work with Fredrik Carlsson, and
Elina Lampi

University of Gothenburg

Funded by
the European Union

Starting point

Discounting is necessary when cost today offers benefits in the future, and how we discount have a huge impact on policy.

We estimate :

- discount factors for future monetary rewards (using the same time frames) common in experimental literature
- ‘*domain-specific*’ discount factors (and rates) for future environmental benefits

Compare and assess if discount rates inferred from monetary choices can be applied to environmental goods—external validity.

Motivation: Policy Guidance

White House Social discount rate recommendation (2024):
2% (not domain-specific)

European Commission (period 2014-2020) Social discount rate recommendation:

5 % is used for major projects in Cohesion countries, and
3 % for the other Member States
(not domain-specific)

Motivation: Literature

Kolstad (Environmental Economics):

*“But there are many social investments in addition to environmental protection that may be considered worthy – education, poverty alleviation, or disease eradication, just to name a few. **One should be consistent in the choice of a discount rate across the many actions that have intergenerational implications.**”*

Motivation: Literature

Ecosystem scarcity motivates lower discount rates in environmental CBA
(Sterner and Persson (2008), Drupp et. al. (2024), Krutilla-Fisher)

Some empirical evidence suggests that discount rates are domain-specific,
e.g.:

- higher discount rates in health decisions than in monetary choices

Relative few papers, however, have compared the two.

Empirical strategy

Use a contingent-valuation survey (with hypothetical scenarios) to elicit todays WTP for improving future biodiversity.

Three scenarios: Benefits utilized

- After 18 years
- After 10 years
- After 2 years

From WTP data, estimate discount factors for future environmental benefits

A brief background on the environmental good and the Survey

Funded by
the European Union

Eelgrass in Malmö harbour

- **Hundred years ago:** Shallow coastal bay with eelgrass and high fish abundance
- Today: From a biologically productive eelgrass bay to an industrial harbour with polluted, lifeless sediments
- We lost biodiversity

Main questions

Scenario	Intervention	Time to successful restoration
1	Rewilding (natural recovery after restoring the seabed)	18 years
2	Planting seeds	10 years
4	Planting seedlings	2 years

Ask for WTP for each of these scenarios.

Sample:

N=1850 responses from Skåne

Internet panel, representative wrt age, education, gender.

Estimating discount factors from WTP data

Funded by
the European Union

Discounting models

- If the discount factor is known, the present value of a future stream of known benefits can be calculated directly.
- If we know the present value of the future stream of benefits, and future stream of benefits, we can estimate the discount factor
- The future stream of benefits are unknown, **but we solve for the discount factor by observing the ratio of present value of the future stream of benefits, at two different point of time.**

Illustration with single future benefit

$$\frac{WTP(B_{18})}{WTP(B_{10})} = \frac{\frac{\delta^{18} W(B_{18})}{\lambda}}{\frac{\delta^{10} W(B_{10})}{\lambda}} = \frac{\frac{1}{(1+r)^{18}} W(B_{18})}{\frac{1}{(1+r)^{10}} \frac{W(B_{10})}{\lambda}} = 1/(1+r)^8$$

Discounting models

Qualitative predictions for the **exponential** and the **hyperbolic model**

Exponential Model: Constant discount rate (and factor) between different time periods

Hyperbolic Model: Reduction over time in discount rate (increase over time in discount factor)

Results and Conclusions

Funded by
the European Union

Raw results annual discount factor (exp disc)

	Environment		Money	
	2 – 10 years	10 – 18 years	2 – 10 years	10 – 18 years
Full sample				
Mean (s.d.)	0.949 (0.109)	0.884 (0.172)	0.927 (0.183)	0.916 (0.207)
Exp. r:	r=0,05	r=0,13	r=0,08	r=0,09
Median	0.965	0.917	0.977	0.977
N	1600	1582	1600	1582

Higher discount rate in future periods:
Neither consistent with exponential nor hyperbolig discounting

Constant discount rate across time periods:
Consistent with exponential discounting

- People discount money and environment differently
- In particular:
 - Money discounting: consistent with exponential
 - Env discounting: neither consistent with exponential nor hyperbolic discounting
 - People are more impatient with the environment for the more distant time-frame.
- We have explored individual differences, and have a hard time explaining the individual variation in discount factors

Thank You!

Mitesh Kataria

mitesh.kataria@gu.se

Let's Get in Touch!

website

biofin-project.eu

e-mail

info@biofin-project.eu
social media

UNIVERSIDADE

