

Tax Progressivity and Income Inequality: A Simple Formula

Julius J. Andersson

Stockholm School of Economics

Malmsten Workshop in Sustainability Economics
Gothenburg, January 23, 2026

NAERE 2026 Workshop

(Nordic Annual Environmental and Resource Economics Workshop)

- When: 11-12 June
- Where: Stockholm School of Economics (SSE)
- Submission deadline: April 1

This Paper: A Simple Formula for Tax Progressivity

The Kakwani index of tax progressivity for indirect taxes can be approximated as:

$$K \equiv C(T) - G \simeq (\eta - 1)G$$

where:

- η is the income elasticity for the taxed good
- G is the Gini of pre-tax income inequality

This Paper: A Simple Formula for Tax Progressivity

The Kakwani index of tax progressivity for indirect taxes can be approximated as:

$$K \equiv C(T) - G \simeq (\eta - 1)G$$

where:

- η is the income elasticity for the taxed good
- G is the Gini of pre-tax income inequality

The formula implies:

- Necessity ($\eta < 1$) \rightarrow Regressive ($K < 0$)
- Luxury ($\eta > 1$) \rightarrow Progressive ($K > 0$)
- And: **Inequality G amplifies tax progressivity**

This Paper: A Simple Formula for Tax Progressivity

The Kakwani index of tax progressivity for indirect taxes can be approximated as:

$$K \equiv C(T) - G \simeq (\eta - 1)G$$

where:

- η is the income elasticity for the taxed good
- G is the Gini of pre-tax income inequality

The formula implies:

- Necessity ($\eta < 1$) \rightarrow Regressive ($K < 0$)
- Luxury ($\eta > 1$) \rightarrow Progressive ($K > 0$)
- And: **Inequality G amplifies tax progressivity**

Empirical test: Sweden's carbon tax on fuel and VAT on food

- Prediction: Regressing K on G \rightarrow linear relationship and slope ($\eta - 1$)

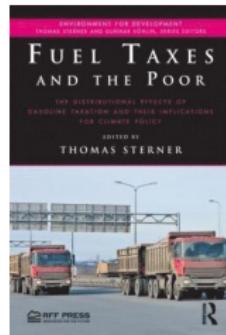
Motivation: Why does Tax Progressivity Vary so Much?

- A central question in public economics: the distributional effects of taxation
- Progressivity of **income taxes**: reflects **statutory tax schedule**
- Progressivity of **indirect taxes**: uniform tax rates across households
→ departures from proportionality arise from **behavioral differences**
- Behavioral foundation implies wide variation in tax progressivity across economic contexts. Example: **carbon and transport fuel taxes**
⇒ How can we explain this variation in tax progressivity?

Motivation: Why does Tax Progressivity Vary so Much?

The puzzle:

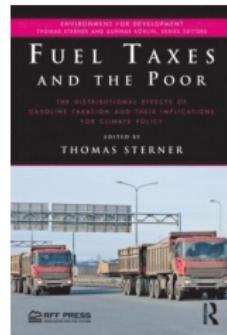
- The same tax (e.g., fuel tax) can be:
 - Regressive in the US
 - Proportional in the Nordics
 - Progressive in developing countries



Motivation: Why does Tax Progressivity Vary so Much?

The puzzle:

- The same tax (e.g., fuel tax) can be:
 - Regressive in the US
 - Proportional in the Nordics
 - Progressive in developing countries



Two explanatory candidates:

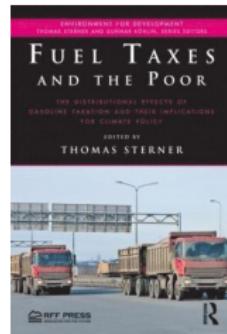
① **Income elasticity η** (behavioral):

"a measure of tax progressivity should depend on the magnitude of the difference of the tax elasticity from unity" – (Kakwani, 1977)

Motivation: Why does Tax Progressivity Vary so Much?

The puzzle:

- The same tax (e.g., fuel tax) can be:
 - Regressive in the US
 - Proportional in the Nordics
 - Progressive in developing countries



Two explanatory candidates:

① **Income elasticity η** (behavioral):

"a measure of tax progressivity should depend on the magnitude of the difference of the tax elasticity from unity" – (Kakwani, 1977)

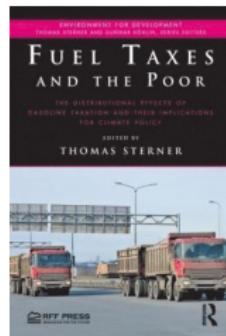
② **Income inequality G** (distributional):

"income distribution is central to the very concept of progressivity" – (Suits, 1977)

Motivation: Why does Tax Progressivity Vary so Much?

The puzzle:

- The same tax (e.g., fuel tax) can be:
 - Regressive in the US
 - Proportional in the Nordics
 - Progressive in developing countries



Two explanatory candidates:

① **Income elasticity η** (behavioral):

"a measure of tax progressivity should depend on the magnitude of the difference of the tax elasticity from unity" – (Kakwani, 1977)

② **Income inequality G** (distributional):

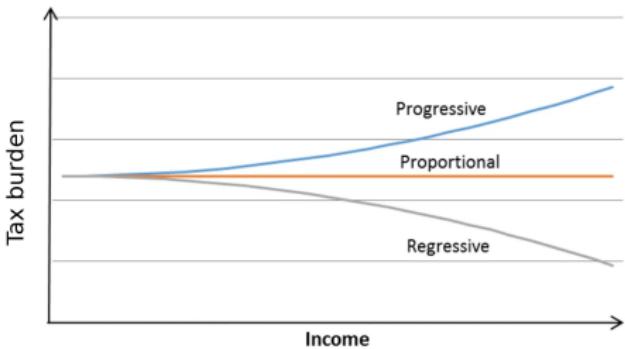
"income distribution is central to the very concept of progressivity" – (Suits, 1977)

However: *"there is no very obvious relation"* between tax progressivity and inequality (Sterner et al., 2012).

This paper: Unifies tax progressivity, η , and G into a simple formula.

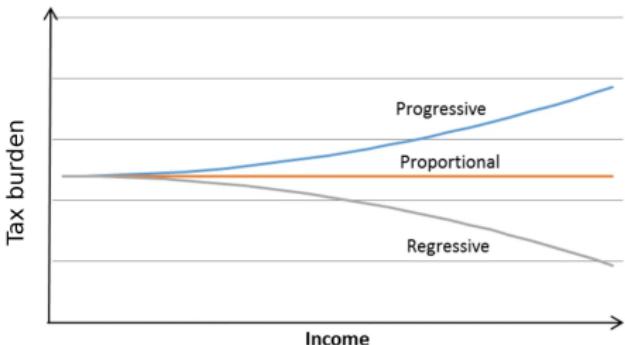
Measuring Tax Progressivity: the Kakwani Index

- If not proportional, taxes are either regressive or progressive



Measuring Tax Progressivity: the Kakwani Index

- If not proportional, taxes are either regressive or progressive



- One popular summary measure: the **Kakwani index** (Kakwani, 1977)

$$K = C(T) - G$$

$C(T)$: the concentration index of tax payments T

G : pre-tax Gini coefficient (measure of income inequality)

Kakwani: the gap between tax concentration curve and Lorenz curve

- $K > 0$ progressive; $K = 0$ proportional; $K < 0$ regressive

Deriving the Simple Formula: Two Ingredients

Goal: Derive $C(T) \approx \eta G$

Households have disposable income y , ranked from poorest to richest with fractional rank $R \in (0, 1]$, and with mean $\mathbb{E}[R] = 1/2$

Deriving the Simple Formula: Two Ingredients

Goal: Derive $C(T) \approx \eta G$

Households have disposable income y , ranked from poorest to richest with fractional rank $R \in (0, 1]$, and with mean $\mathbb{E}[R] = 1/2$

Two main ingredients:

- ① **Log-linear Engel curve** for pre-tax expenditure on the taxed good:

$$c(y) = A y^\eta, \quad A > 0, \eta \in \mathbb{R} \quad (1)$$

Deriving the Simple Formula: Two Ingredients

Goal: Derive $C(T) \approx \eta G$

Households have disposable income y , ranked from poorest to richest with fractional rank $R \in (0, 1]$, and with mean $\mathbb{E}[R] = 1/2$

Two main ingredients:

- ① **Log-linear Engel curve** for pre-tax expenditure on the taxed good:

$$c(y) = A y^\eta, \quad A > 0, \eta \in \mathbb{R} \quad (1)$$

- ② **Covariance forms** of concentration indices and Gini:

$$C(T) = \frac{2}{\mu_T} \operatorname{Cov}(T, R), \quad G = \frac{2}{\mu_y} \operatorname{Cov}(y, R) \quad (2)$$

Deriving the Simple Formula: Two Ingredients

Goal: Derive $C(T) \approx \eta G$

Households have disposable income y , ranked from poorest to richest with fractional rank $R \in (0, 1]$, and with mean $\mathbb{E}[R] = 1/2$

Two main ingredients:

① **Log-linear Engel curve** for pre-tax expenditure on the taxed good:

$$c(y) = A y^\eta, \quad A > 0, \eta \in \mathbb{R} \quad (1)$$

② **Covariance forms** of concentration indices and Gini:

$$C(T) = \frac{2}{\mu_T} \text{Cov}(T, R), \quad G = \frac{2}{\mu_y} \text{Cov}(y, R) \quad (2)$$

Which gives Kakwani index in covariance form:

$$K = \frac{2}{\mu_T} \text{Cov}(T, R) - \frac{2}{\mu_y} \text{Cov}(y, R) \quad (3)$$

Deriving the Simple Formula: Tax Payments

Then, a proportional excise tax with rate τ is imposed on the good

- Tax payments:

$$T(y) = \tau c(y) = \kappa y^\eta, \quad \kappa \equiv \tau A \quad (4)$$

Deriving the Simple Formula: Tax Payments

Then, a proportional excise tax with rate τ is imposed on the good

- Tax payments:

$$T(y) = \tau c(y) = \kappa y^\eta, \quad \kappa \equiv \tau A \quad (4)$$

- Substituting (4) into the concentration index of tax payments:

$$C(T) = \frac{2}{\mathbb{E}[y^\eta]} \operatorname{Cov}(y^\eta, R), \quad (5)$$

Deriving the Simple Formula: Tax Payments

Then, a proportional excise tax with rate τ is imposed on the good

- Tax payments:

$$T(y) = \tau c(y) = \kappa y^\eta, \quad \kappa \equiv \tau A \quad (4)$$

- Substituting (4) into the concentration index of tax payments:

$$C(T) = \frac{2}{\mathbb{E}[y^\eta]} \operatorname{Cov}(y^\eta, R), \quad (5)$$

- And thus:

$$K = \frac{2}{\mathbb{E}[y^\eta]} \operatorname{Cov}(y^\eta, R) - \frac{2}{\mu_y} \operatorname{Cov}(y, R) \quad (6)$$

- Note: κ cancels out in equation (5) \rightarrow the Kakwani index is invariant to the tax level (progressivity is about *relative* burden across ranks)

Deriving the Simple Formula: Linearization

- Linearizing y^η around mean income μ_y :

$$y^\eta \approx \mu_y^\eta + \eta \mu_y^{\eta-1} (y - \mu_y), \quad (7)$$

Deriving the Simple Formula: Linearization

- Linearizing y^η around mean income μ_y :

$$y^\eta \approx \mu_y^\eta + \eta \mu_y^{\eta-1} (y - \mu_y), \quad (7)$$

- Substituting into (5) yields the key approximation:

$$C(T) \approx \eta G \quad (8)$$

- And hence, the Kakwani index simplifies to:

$$K = C(T) - G \approx (\eta - 1)G \quad (9)$$

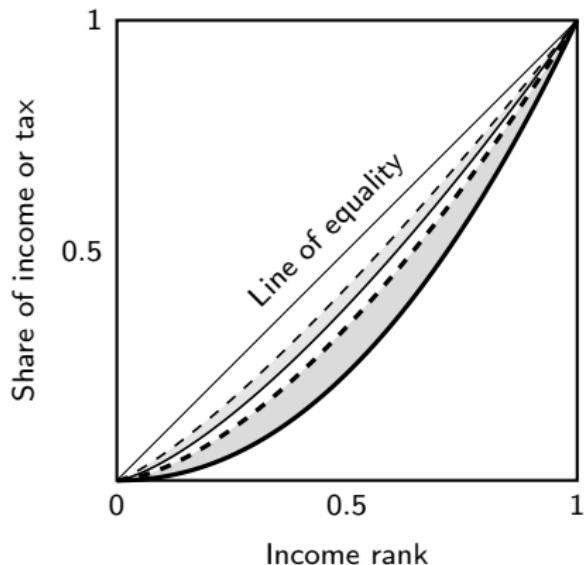
Interpretation: Elasticity gap and Inequality

$$K \simeq (\eta - 1)G$$

- $(\eta - 1)$: behavioral component (how spending shifts with income). Measures the **elasticity of the budget share** for the taxed good
- G : income inequality is a (distributional) amplifier
- Their product measures tax progressivity

Graphical Intuition: Lorenz vs. Tax Concentration Curves

$\eta < 1$: Necessity (Regressive)

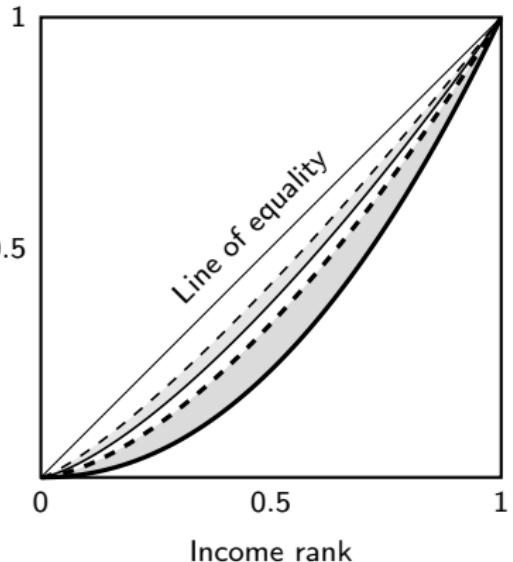


- Lorenz, low G
- Lorenz, high G
- - - $C(T)$, low G
- - - $C(T)$, high G

Graphical Intuition: Lorenz vs. Tax Concentration Curves

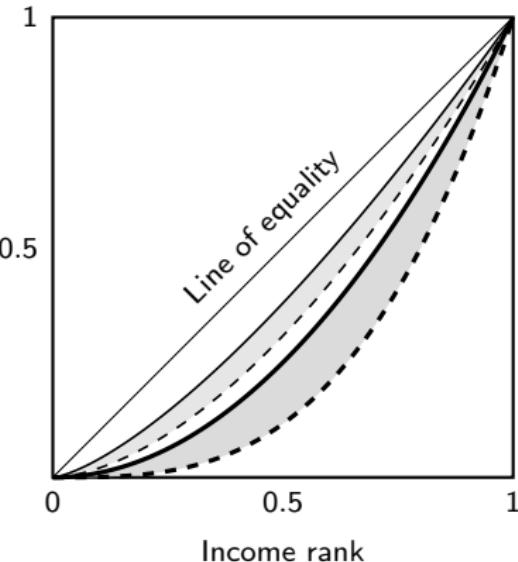
$\eta < 1$: Necessity (Regressive)

Share of income or tax



$\eta > 1$: Luxury (Progressive)

Share of income or tax



— Lorenz, low G	— Lorenz, high G
- - - C(T), low G	- - - C(T), high G

— Lorenz, low G	— Lorenz, high G
- - - C(T), low G	- - - C(T), high G

Extension: Heterogeneous Income Elasticities

- Preceding analysis assumed a **constant** income elasticity of demand
- Now, allow: $\eta = \eta(y)$ (**heterogeneous** income elasticities)
- Example: A good is a luxury for the poor but a necessity for the rich

Extension: Heterogeneous Income Elasticities

- Preceding analysis assumed a **constant** income elasticity of demand
- Now, allow: $\eta = \eta(y)$ (**heterogeneous** income elasticities)
- Example: A good is a luxury for the poor but a necessity for the rich
- Then, it follows that:

$$K \simeq (\bar{\eta}_R - 1)G \quad (10)$$

- Where $\bar{\eta}_R$ is a **rank-weighted** average elasticity
 - Intuition: rising inequality puts more rank-weight on the rich; if $\eta(y)$ falls with income, $\eta'(y) < 0$, the effective elasticity declines

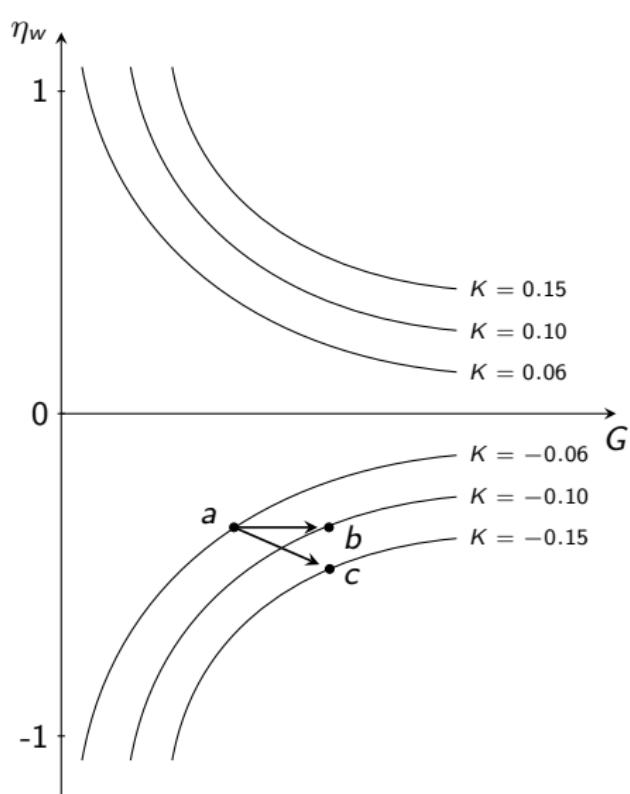
Extension: Heterogeneous Income Elasticities

- Preceding analysis assumed a **constant** income elasticity of demand
- Now, allow: $\eta = \eta(y)$ (**heterogeneous** income elasticities)
- Example: A good is a luxury for the poor but a necessity for the rich
- Then, it follows that:

$$K \simeq (\bar{\eta}_R - 1)G \quad (10)$$

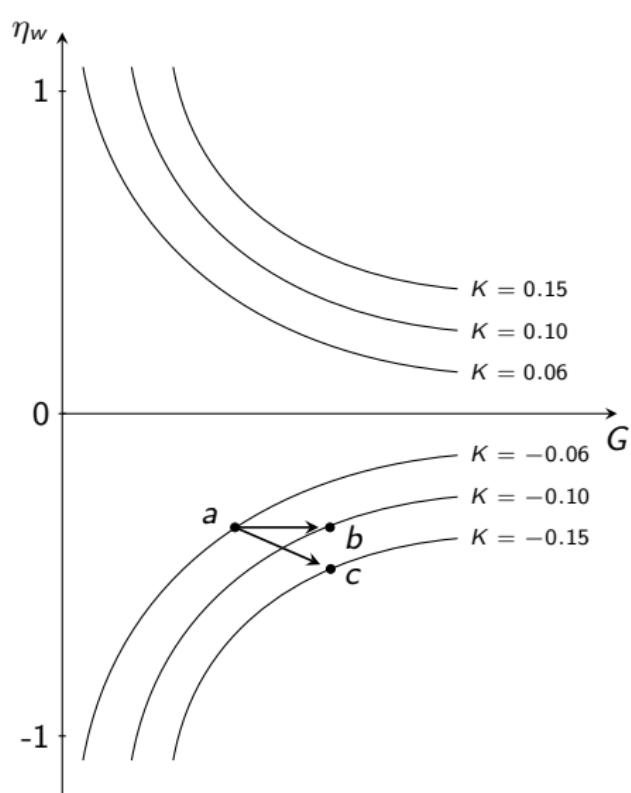
- Where $\bar{\eta}_R$ is a **rank-weighted** average elasticity
 - Intuition: rising inequality puts more rank-weight on the rich; if $\eta(y)$ falls with income, $\eta'(y) < 0$, the effective elasticity declines
- Rising inequality affects tax progressivity through two channels:
 - ① **Direct effect** through higher G
 - ② **Compositional effect** by shift in $\bar{\eta}_R$

Isoprogressivity Curves: Direct and Compositional Effects



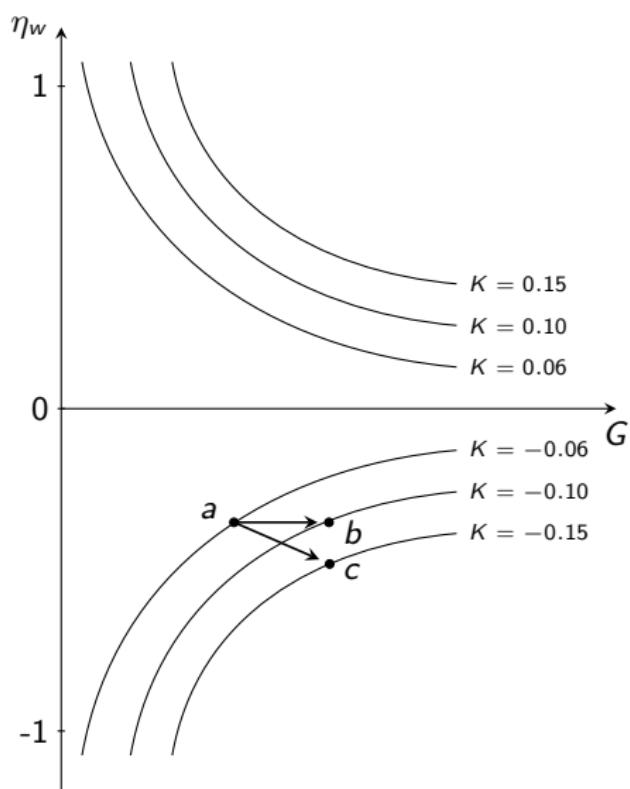
- Rewrite: $K = \eta_w G$ with $\eta_w = \eta - 1$ (income elasticity of the budget share)
- Isoprogressivity curves: combinations of G and η_w that yield a constant K

Isoprogressivity Curves: Direct and Compositional Effects



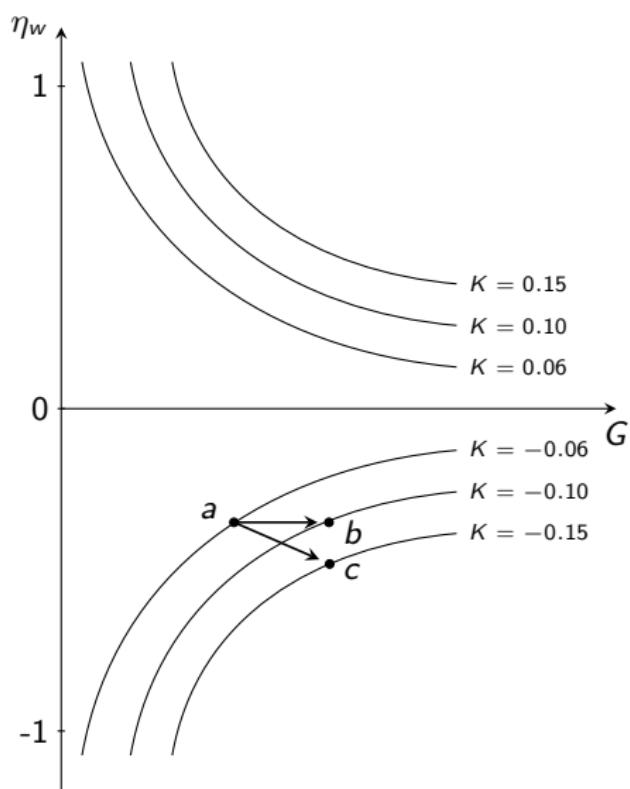
- Rewrite: $K = \eta_w G$ with $\eta_w = \eta - 1$ (income elasticity of the budget share)
- Isoprogressivity curves: combinations of G and η_w that yield a constant K
- Assumptions: tax on necessity, starting point $a = (G_a, \eta_{w,a})$, $K_a = -0.06$

Isoprogressivity Curves: Direct and Compositional Effects



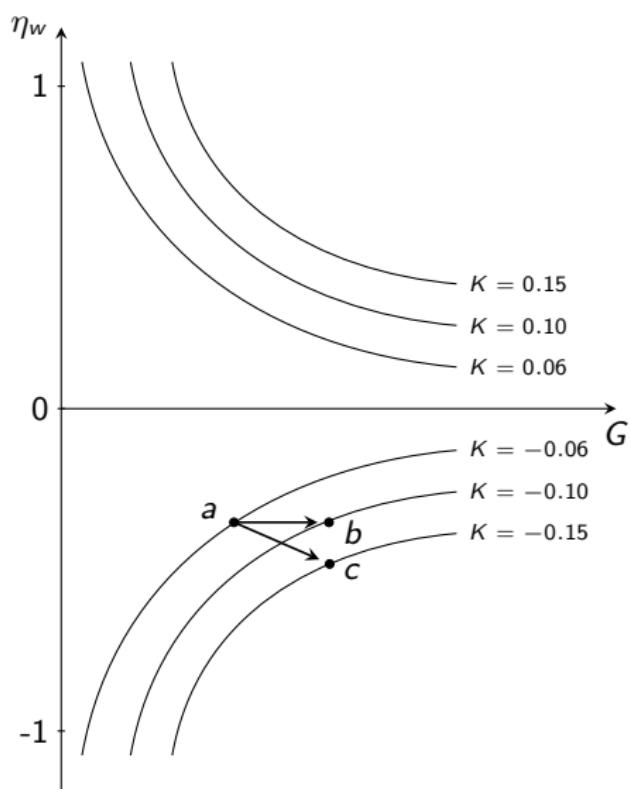
- Rewrite: $K = \eta_w G$ with $\eta_w = \eta - 1$ (income elasticity of the budget share)
- Isoprogressivity curves: combinations of G and η_w that yield a constant K
- Assumptions: tax on necessity, starting point $a = (G_a, \eta_{w,a})$, $K_a = -0.06$
- What happens when inequality increases?

Isoprogressivity Curves: Direct and Compositional Effects



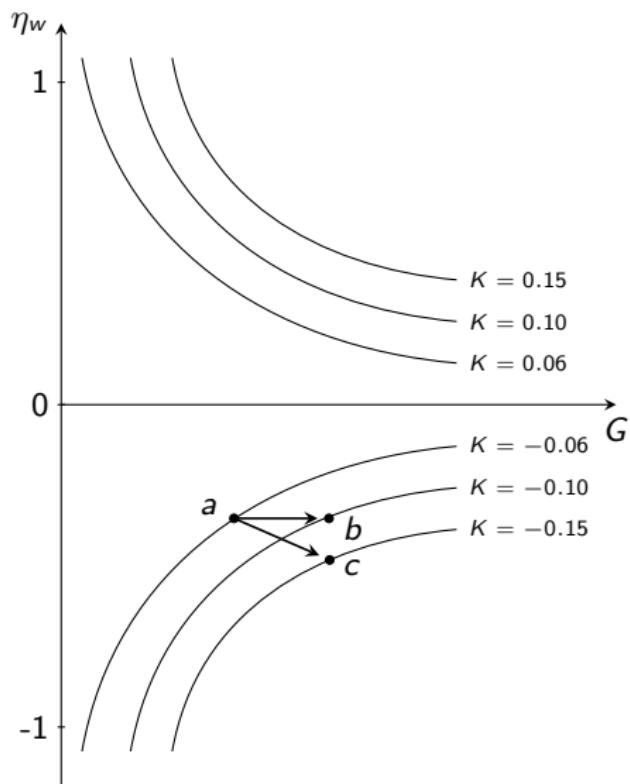
- Rewrite: $K = \eta_w G$ with $\eta_w = \eta - 1$ (income elasticity of the budget share)
- Isoprogressivity curves: combinations of G and η_w that yield a constant K
- Assumptions: tax on necessity, starting point $a = (G_a, \eta_{w,a})$, $K_a = -0.06$
- What happens when inequality increases?
- **Direct effect (a → b):** Higher G amplifies η_w

Isoprogressivity Curves: Direct and Compositional Effects



- Rewrite: $K = \eta_w G$ with $\eta_w = \eta - 1$ (income elasticity of the budget share)
- Isoprogressivity curves: combinations of G and η_w that yield a constant K
- Assumptions: tax on necessity, starting point $a = (G_a, \eta_{w,a})$, $K_a = -0.06$
- What happens when inequality increases?
- **Direct effect (a→b):** Higher G amplifies η_w
- **Compositional (b→c):** With $\eta(y)' < 0$, rising inequality lowers the rank-weighted elasticity. Richer people get more weight

Isoprogressivity Curves: Direct and Compositional Effects



- Rewrite: $K = \eta_w G$ with $\eta_w = \eta - 1$ (income elasticity of the budget share)
- Isoprogressivity curves: combinations of G and η_w that yield a constant K
- Assumptions: tax on necessity, starting point $a = (G_a, \eta_{w,a})$, $K_a = -0.06$
- What happens when inequality increases?
- **Direct effect ($a \rightarrow b$)**: Higher G amplifies η_w
- **Compositional ($b \rightarrow c$)**: With $\eta(y)' < 0$, rising inequality lowers the rank-weighted elasticity. Richer people get more weight
- **Total effect ($a \rightarrow c$)**: $\Delta K_{\text{total}} = -0.09$

Empirical test: Sweden as a Case Study

Empirical prediction:

- If η is **constant**:
 - K is linear in G , with slope $(\eta - 1)$ and intercept around zero
 - Slope maps to implied elasticity: $\eta = 1 + \text{slope}$
- If elasticities are **heterogeneous** $\eta(y)$:
 - Still linear relationship but slope reflects the compounded effect ($\bar{\eta}_R$ moves with G)
 - Slope $\neq \eta$

Empirical test: Sweden as a Case Study

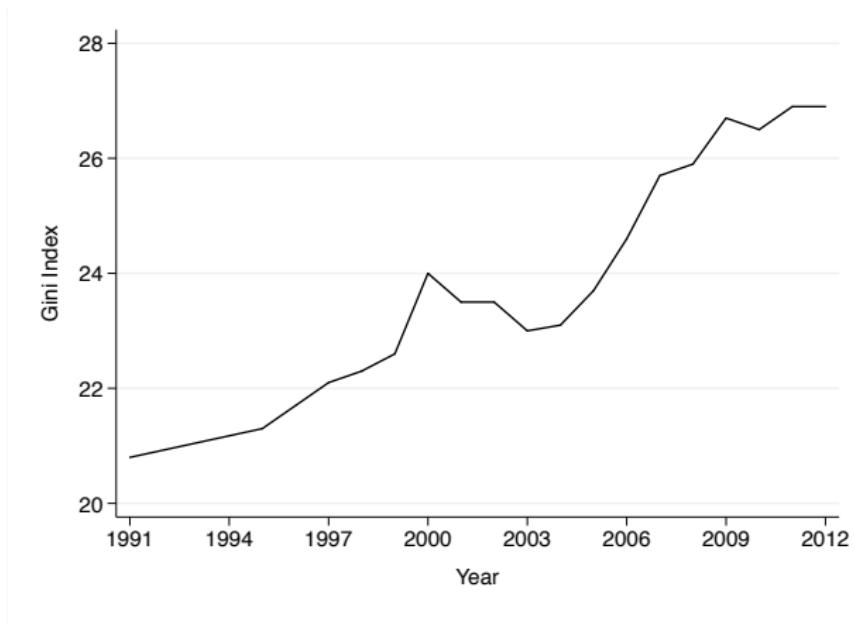
Empirical prediction:

- If η is **constant**:
 - K is linear in G , with slope $(\eta - 1)$ and intercept around zero
 - Slope maps to implied elasticity: $\eta = 1 + \text{slope}$
- If elasticities are **heterogeneous** $\eta(y)$:
 - Still linear relationship but slope reflects the compounded effect ($\bar{\eta}_R$ moves with G)
 - Slope $\neq \eta$

Case study: Sweden's carbon tax on transport fuel and VAT on food

- Carbon tax on transport fuel since 1991
- VAT of 12 percent on all food products
- Data: household survey data 1999-2012 for carbon tax, 2003-2012 for VAT on food (source: Statistics Sweden)

Empirical test: Income Inequality in Sweden



Gini coefficient in Sweden: 1991-2012

- Variation in Gini during sample years (1999-2012): 0.22-0.27
- Both increases and decreases in inequality

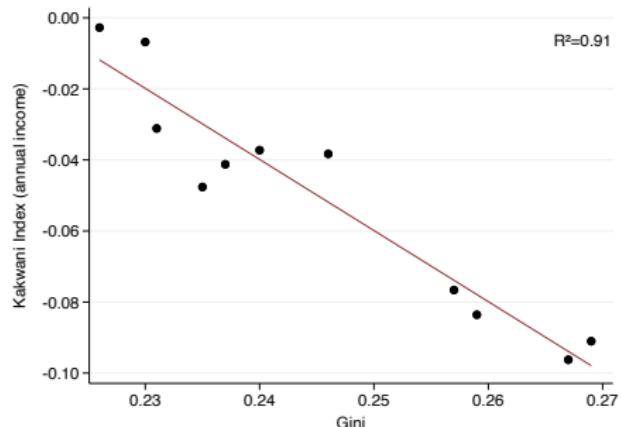
Empirical test: Carbon Tax on Fuel and VAT on Food



(a) Carbon tax on transport fuel

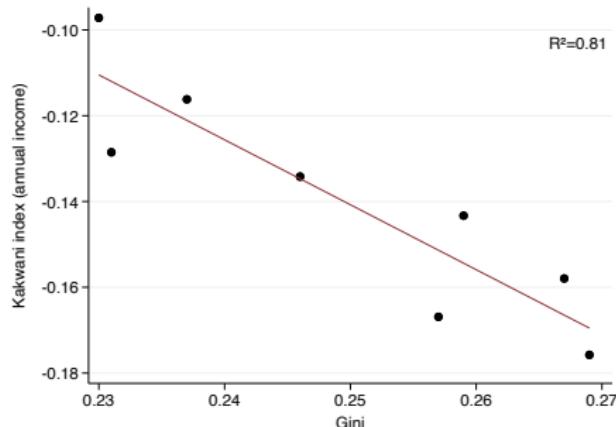
- Average $\eta = 0.80$ (necessity)
- Slope implies $\eta = -1$
- Indicates: heterogeneous $\eta(y)$

Empirical test: Carbon Tax on Fuel and VAT on Food



(a) Carbon tax on transport fuel

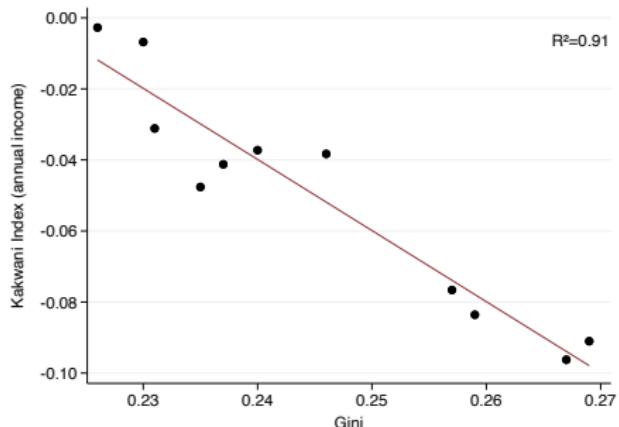
- Average $\eta = 0.80$ (necessity)
- Slope implies $\eta = -1$
- Indicates: heterogeneous $\eta(y)$



(b) VAT on food

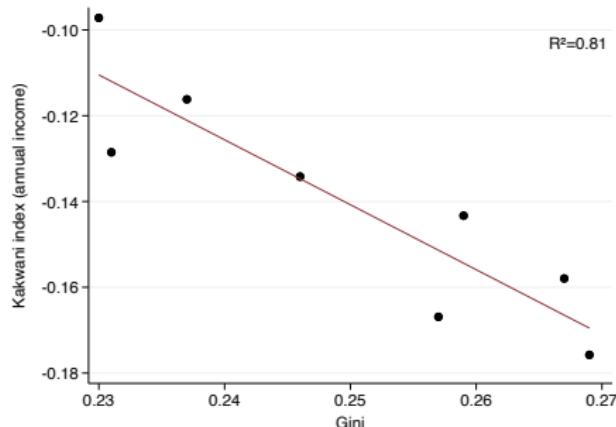
- Average $\eta = 0.44$ (necessity)
- Slope implies $\eta = -0.51$
- Indicates: heterogeneous $\eta(y)$

Empirical test: Carbon Tax on Fuel and VAT on Food



(a) Carbon tax on transport fuel

- Average $\eta = 0.80$ (necessity)
- Slope implies $\eta = -1$
- Indicates: heterogeneous $\eta(y)$

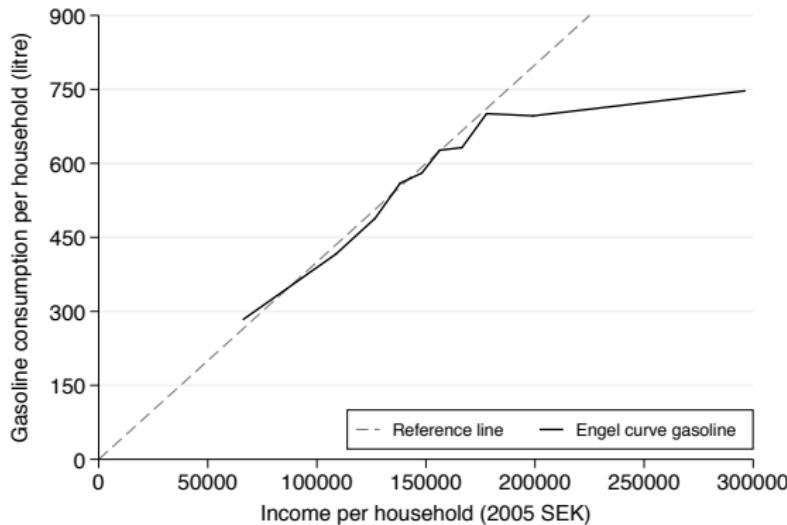


(b) VAT on food

- Average $\eta = 0.44$ (necessity)
- Slope implies $\eta = -0.51$
- Indicates: heterogeneous $\eta(y)$

Finding average η ? \Rightarrow Regress K on G with "noconstant"

Gasoline Engel Curve and Evidence on $\eta(y)$



- Reference line (benchmark): $\eta = 1$
- Engel curve flattens at higher incomes: Consistent with $\eta(y)' < 0$

Contributions to Literature

- ① Brings together two foundational insights: Kakwani (1977) on the role of elasticities and Suits (1977) on the income distribution

Contributions to Literature

- ① Brings together two foundational insights: Kakwani (1977) on the role of elasticities and Suits (1977) on the income distribution
- ② Exemplifies sufficient-statistics tradition (Saez, 2001; Chetty, 2009): characterize policy-relevant objects using a small set of estimable parameters → here η and G for tax progressivity

Contributions to Literature

- ① Brings together two foundational insights: Kakwani (1977) on the role of elasticities and Suits (1977) on the income distribution
- ② Exemplifies sufficient-statistics tradition (Saez, 2001; Chetty, 2009): characterize policy-relevant objects using a small set of estimable parameters → here η and G for tax progressivity
- ③ Theoretical foundation for empirical literature on tax progressivity: wide variation in distributional effects of carbon and fuel taxes (Sterner, 2012; Sager, 2023; Feindt et al., 2021; Dorband et al., 2019)

Contributions to Literature

- ① Brings together two foundational insights: Kakwani (1977) on the role of elasticities and Suits (1977) on the income distribution
- ② Exemplifies sufficient-statistics tradition (Saez, 2001; Chetty, 2009): characterize policy-relevant objects using a small set of estimable parameters → here η and G for tax progressivity
- ③ Theoretical foundation for empirical literature on tax progressivity: wide variation in distributional effects of carbon and fuel taxes (Sterner, 2012; Sager, 2023; Feindt et al., 2021; Dorband et al., 2019)
- ④ Simplifies the Reynolds-Smolensky index (full distributional effect):

$$RS = G_{\text{pre}} - G_{\text{post}} = \frac{g}{1-g} K \Rightarrow RS \simeq \frac{g}{1-g} (\eta - 1) G$$

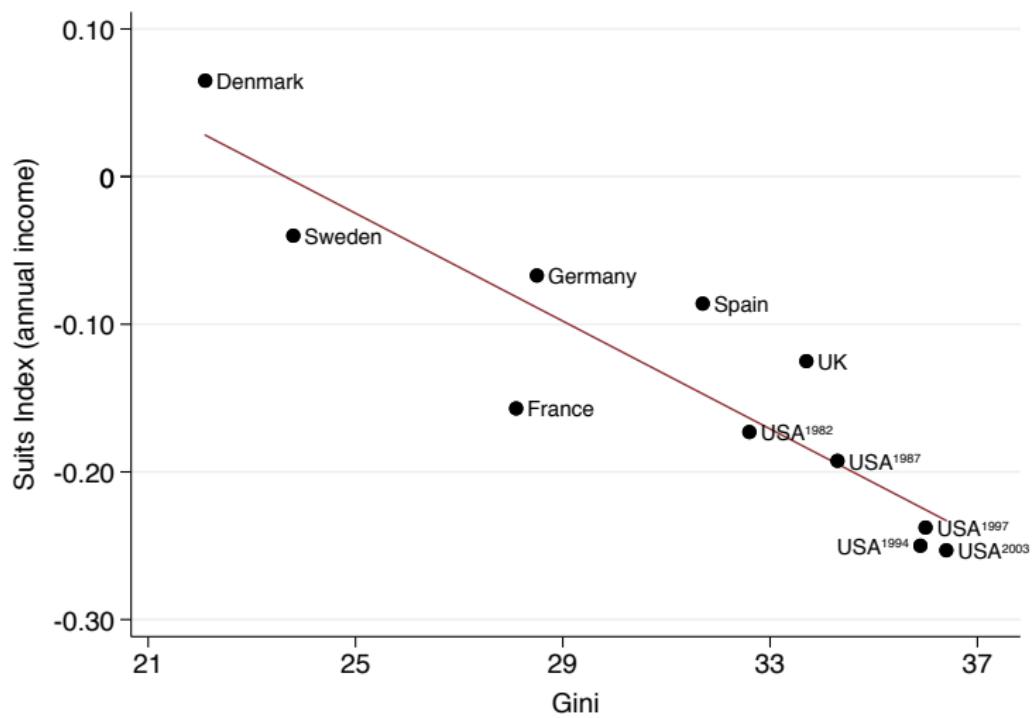
where g is the average tax rate.

Conclusion with Policy Implications

$$K \simeq (\eta - 1)G$$

- ① Formalizes intuition: tax on necessities is regressive, tax on luxuries progressive
- ② Inequality alone can shift tax progressivity of existing taxes
- ③ Explains cross-country variation: same tax \rightarrow different progressivity under different η and G (e.g., regressive carbon tax in the US, proportional in the Nordics)
- ④ More speculative: Matters for the sustainability of climate policy. May explain cross-country variation in political acceptance of carbon and fuel taxes

Tax Progressivity and Inequality: Cross-Country Evidence



Note: tax progressivity of gasoline taxes measured using Suits index.

Deriving the Simple Formula: $C(T) = \eta G$

- Linearizing y^η around mean income μ_y :

$$y^\eta \approx \mu_y^\eta + \eta \mu_y^{\eta-1} (y - \mu_y), \quad (11)$$

- Which implies:

$$\text{Cov}(y^\eta, R) \approx \eta \mu_y^{\eta-1} \text{Cov}(y, R), \quad \text{and} \quad \mathbb{E}[y^\eta] \approx \mu_y^\eta \quad (12)$$

- Substituting into (5) yields the key approximation:

$$\begin{aligned} C(T) &= \frac{2}{\mathbb{E}[y^\eta]} \text{Cov}(y^\eta, R) \approx \frac{2}{\mu_y^\eta} \left(\eta \mu_y^{\eta-1} \text{Cov}(y, R) \right) \\ &= \eta \frac{2}{\mu_y} \text{Cov}(y, R) = \eta G, \end{aligned} \quad (13)$$

- And hence, the Kakwani index simplifies to:

$$K = C(T) - G \approx (\eta - 1)G \quad (14)$$

Limitations and Assumptions

The simple formula is a first-order approximation rather than an exact identity.

Assumptions:

- Moderate income dispersion and a locally log-linear Engel curve
- That η is constant, if not, η reflects a rank-weighted average elasticity
- Full tax pass-through to consumers
- Fixed (pre-tax) disposable income with no behavioral feedbacks
- A single taxed good
- No re-ranking