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This Paper: A Simple Formula for Tax Progressivity

The Kakwani index of tax progressivity for indirect taxes can be
approximated as:

K ≡ C (T )− G ≃ (η − 1)G

where:
η is the income elasticity for the taxed good

G is the Gini of pre-tax income inequality

The formula implies:

Necessity (η < 1) → Regressive (K < 0)

Luxury (η > 1) → Progressive (K > 0)

And: Inequality G amplifies tax progressivity

Empirical test: Sweden’s carbon tax on fuel and VAT on food

Prediction: Regressing K on G → linear relationship and slope (η− 1)
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Motivation: Why does Tax Progressivity Vary so Much?

A central question in public economics: the distributional effects of
taxation

Progressivity of income taxes: reflects statutory tax schedule

Progressivity of indirect taxes: uniform tax rates across households
→ departures from proportionality arise from behavioral differences

Behavioral foundation implies wide variation in tax progressivity across
economic contexts. Example: carbon and transport fuel taxes

⇒ How can we explain this variation in tax progressivity?
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Motivation: Why does Tax Progressivity Vary so Much?

The puzzle:

The same tax (e.g., fuel tax) can be:

- Regressive in the US
- Proportional in the Nordics
- Progressive in developing countries

Two explanatory candidates:

1 Income elasticity η (behavioral):
”a measure of tax progressivity should depend on the magnitude of the difference

of the tax elasticity from unity” – (Kakwani, 1977)

2 Income inequality G (distributional):
”income distribution is central to the very concept of progressivity” – (Suits, 1977)

However: ”there is no very obvious relation” between tax progressivity and
inequality (Sterner et al., 2012).

This paper: Unifies tax progressivity, η, and G into a simple formula.
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Measuring Tax Progressivity: the Kakwani Index

If not proportional, taxes
are either regressive or
progressive

One popular summary measure: the Kakwani index (Kakwani, 1977)

K = C (T )− G

C (T ): the concentration index of tax payments T

G : pre-tax Gini coefficient (measure of income inequality)

Kakwani: the gap between tax concentration curve and Lorenz curve

K > 0 progressive; K = 0 proportional; K < 0 regressive
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Deriving the Simple Formula: Two Ingredients

Goal: Derive C (T ) ≈ η G

Households have disposable income y , ranked from poorest to richest with
fractional rank R ∈ (0, 1], and with mean E[R] = 1/2

Two main ingredients:
1 Log-linear Engel curve for pre-tax expenditure on the taxed good:

c(y) = Ayη, A > 0, η ∈ R (1)

2 Covariance forms of concentration indices and Gini:

C (T ) =
2

µT
Cov(T ,R), G =

2

µy
Cov(y ,R) (2)

Which gives Kakwani index in covariance form:

K =
2

µT
Cov

(
T ,R

)
− 2

µy
Cov(y ,R) (3)
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Deriving the Simple Formula: Tax Payments

Then, a proportional excise tax with rate τ is imposed on the good

Tax payments:

T (y) = τ c(y) = κ yη, κ ≡ τA (4)

Substituting (4) into the concentration index of tax payments:

C (T ) =
2

E[yη]
Cov

(
yη,R

)
, (5)

And thus:

K =
2

E[yη]
Cov

(
yη,R

)
− 2

µy
Cov(y ,R) (6)

Note: κ cancels out in equation (5) → the Kakwani index is invariant
to the tax level (progressivity is about relative burden across ranks)
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Deriving the Simple Formula: Linearization

Linearizing yη around mean income µy :

yη ≈ µη
y + η µη−1

y (y − µy ), (7)

Substituting into (5) yields the key approximation:

C (T ) ≈ η G (8)

And hence, the Kakwani index simplifies to:

K = C (T )− G ≈ (η − 1)G (9)
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Interpretation: Elasticity gap and Inequality

K ≃ (η − 1)G

(η − 1): behavioral component (how spending shifts with income).
Measures the elasticity of the budget share for the taxed good

G : income inequality is a (distributional) amplifier

Their product measures tax progressivity
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Graphical Intuition: Lorenz vs. Tax Concentration Curves
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Extension: Heterogeneous Income Elasticities

Preceding analysis assumed a constant income elasticity of demand

Now, allow: η = η(y) (heterogeneous income elasticities)

Example: A good is a luxury for the poor but a necessity for the rich

Then, it follows that:
K ≃ (η̄R − 1)G (10)

Where η̄R is a rank-weighted average elasticity

Intuition: rising inequality puts more rank-weight on the rich; if η(y)
falls with income, η′(y) < 0, the effective elasticity declines

Rising inequality affects tax progressivity through two channels:

1 Direct effect through higher G
2 Compositional effect by shift in η̄R
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Isoprogressivity Curves: Direct and Compositional Effects
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Total effect (a→c): ∆Ktotal = −0.09
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Empirical test: Sweden as a Case Study

Empirical prediction:

If η is constant:
K is linear in G , with slope (η − 1) and intercept around zero
Slope maps to implied elasticity: η = 1 + slope

If elasticities are heterogeneous η(y):

Still linear relationship but slope reflects the compounded effect
(η̄R moves with G )
Slope ̸= η

Case study: Sweden’s carbon tax on transport fuel and VAT on food

Carbon tax on transport fuel since 1991

VAT of 12 percent on all food products

Data: household survey data 1999-2012 for carbon tax, 2003-2012 for
VAT on food (source: Statistics Sweden)
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Empirical test: Income Inequality in Sweden
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Gini coefficient in Sweden: 1991-2012

Variation in Gini during sample years (1999-2012): 0.22-0.27

Both increases and decreases in inequality
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Empirical test: Carbon Tax on Fuel and VAT on Food
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Gasoline Engel Curve and Evidence on η(y)
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Contributions to Literature

1 Brings together two foundational insights: Kakwani (1977) on the
role of elasticities and Suits (1977) on the income distribution

2 Exemplifies sufficient-statistics tradition (Saez, 2001; Chetty, 2009):
characterize policy-relevant objects using a small set of estimable
parameters → here η and G for tax progressivity

3 Theoretical foundation for empirical literature on tax progressivity:
wide variation in distributional effects of carbon and fuel taxes
(Sterner, 2012; Sager, 2023; Feindt et al., 2021; Dorband et al., 2019)

4 Simplifies the Reynolds-Smolensky index (full distributional effect):

RS = Gpre − Gpost =
g

1− g
K ⇒ RS ≃ g

1− g
(η − 1)G

where g is the average tax rate.
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Conclusion with Policy Implications

K ≃ (η − 1)G

1 Formalizes intuition: tax on necessities is regressive, tax on luxuries
progressive

2 Inequality alone can shift tax progressivity of existing taxes

3 Explains cross-country variation: same tax → different progressivity
under different η and G (e.g., regressive carbon tax in the US,
proportional in the Nordics)

4 More speculative: Matters for the sustainability of climate policy.
May explain cross-country variation in political acceptance of carbon
and fuel taxes
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Tax Progressivity and Inequality: Cross-Country Evidence
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Note: tax progressivity of gasoline taxes measured using Suits index.
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Deriving the Simple Formula: C (T ) = ηG

Linearizing yη around mean income µy :

yη ≈ µη
y + η µη−1

y (y − µy ), (11)

Which implies:

Cov(yη,R) ≈ η µη−1
y Cov(y ,R), and E[yη] ≈ µη

y (12)

Substituting into (5) yields the key approximation:

C (T ) =
2

E[yη]
Cov(yη,R) ≈ 2

µη
y

(
η µη−1

y Cov(y ,R)
)

= η
2

µy
Cov(y ,R) = η G , (13)

And hence, the Kakwani index simplifies to:

K = C (T )− G ≈ (η − 1)G (14)
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Limitations and Assumptions

The simple formula is a first-order approximation rather than an exact
identity.

Assumptions:

Moderate income dispersion and a locally log-linear Engel curve

That η is constant, if not, η reflects a rank-weighted average elasticity

Full tax pass-through to consumers

Fixed (pre-tax) disposable income with no behavioral feedbacks

A single taxed good

No re-ranking
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