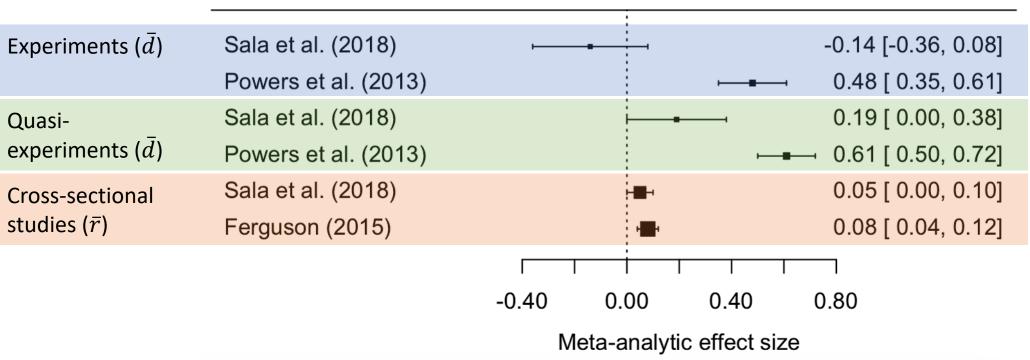


Bringing it all together—

How International Large-Scale Assessments Can Inform Meta-Analyses in Education


Video Gaming and Academic Performance

What Some Meta-Analyses Reveal

Meta-Analy	sis
	•.•

Effect size [95% CI]

Video Gaming and Academic Performance

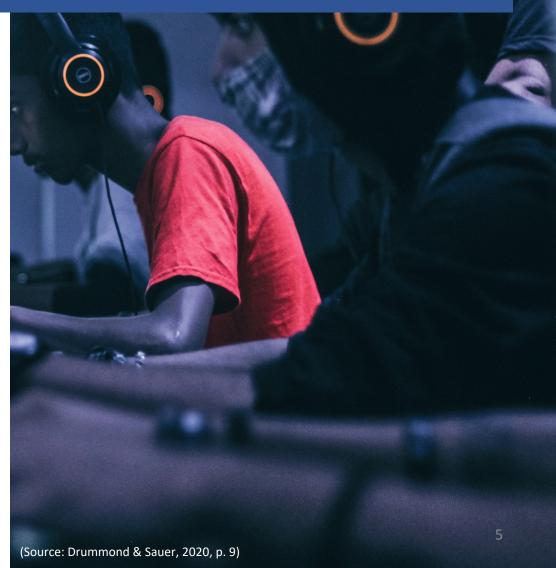
Some Meta-Analyses Differ

- Search, screening, and coding of the study data
- Meta-analytic modelling approach
- Features and quality of the included studies

Language/culture selection bias

Small and non-representative samples


Measures with insufficient psychometric quality



Opportunity for International Large-Scale Assessments?

Video Gaming and Academic Performance

Drummond and Sauer (2020) used PISA 2015 data to clarify some differences.

Meta-Analyses and ILSAs as Evidence Sources

Benefits, Challenges, and Procedures of Meta-Analysing ILSA Data

- 1 More complex meta-analytic models
- 2 Improved generalizability and robustness
- (3) Better quality and reduced bias of meta-analytic evidence

International Large-Scale Assessments (ILSAs)

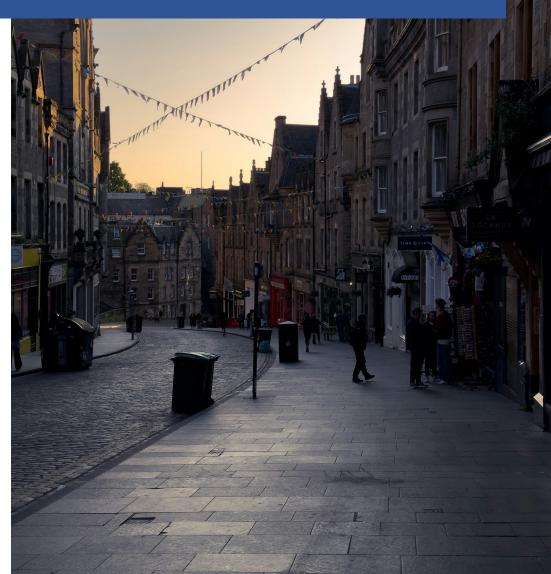
Key features

- Empirical & quantitative studies
- Large, international, representative samples
- Complex survey sampling design

Researching education, improving learning

PISA TALIS PIAAC TIMSS PIRLS ICILS

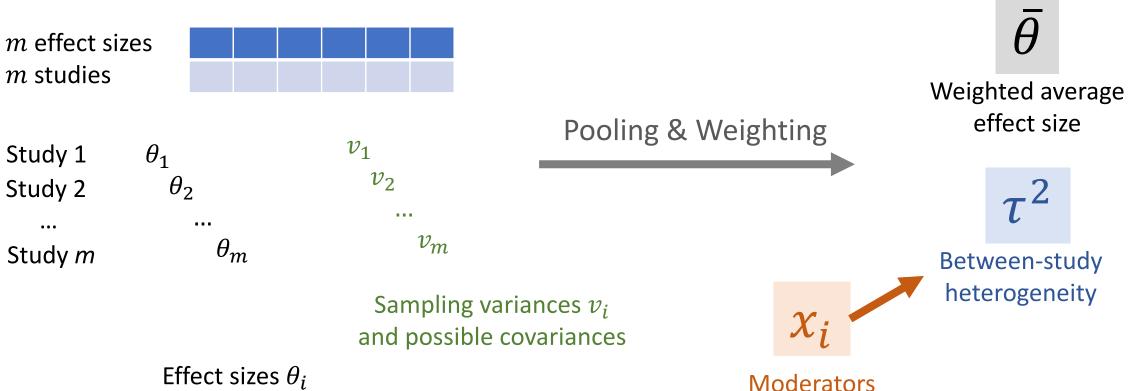
UiO CREATE – Centre for Research on Equality in Education
University of Oslo


Meta-Analyses in Education

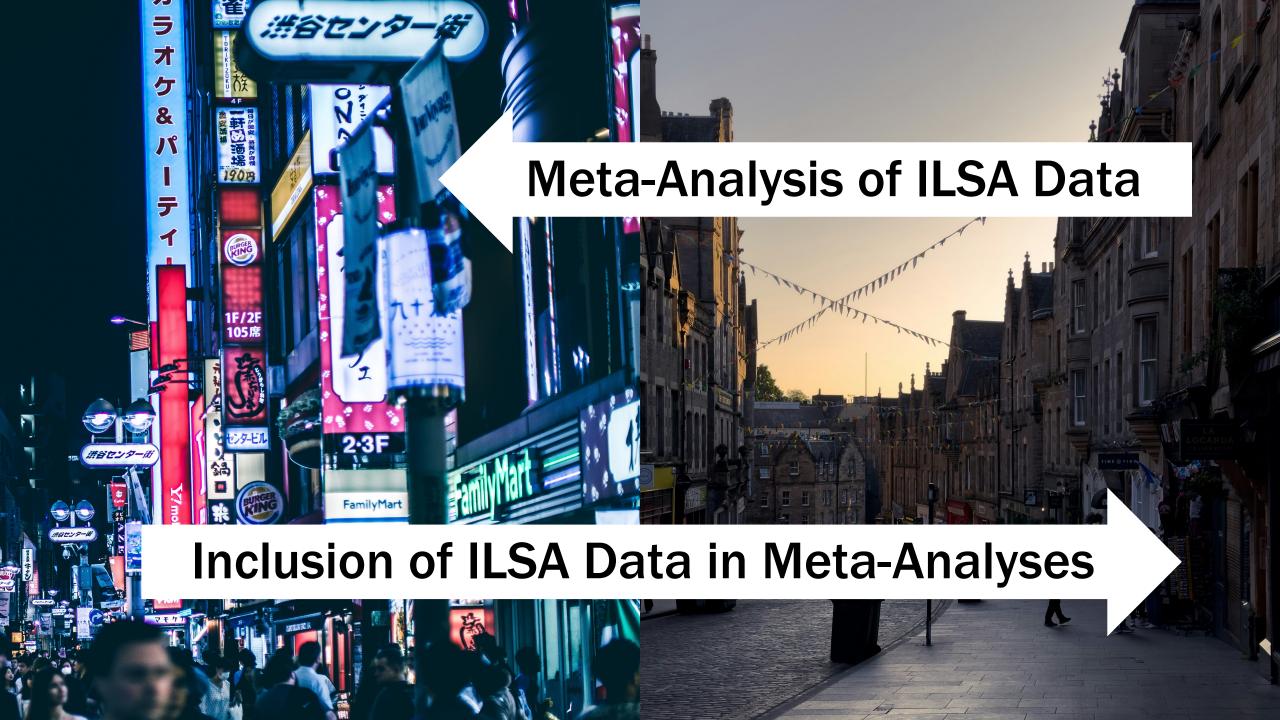
"Quantitative technique for synthesizing the results of multiple studies of a phenomenon into a single result."

(APA, 2018, p. 1)

Typical effect sizes


- Intervention effects
- Relations among constructs
- Group differences

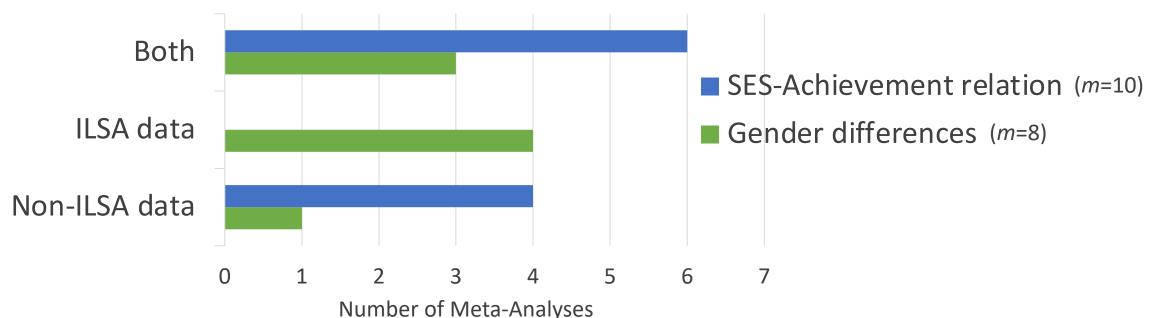
Meta-Analyses in Education


(Borenstein et al., 2009; Card, 2012)

Typical meta-analysis

Effect sizes θ_i (e.g., correlations, standardized mean differences, regression coefficients)

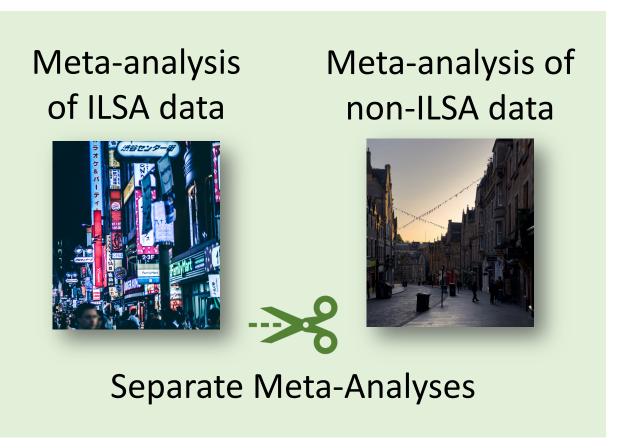
(e.g., study, sample, measurement, country characteristics)

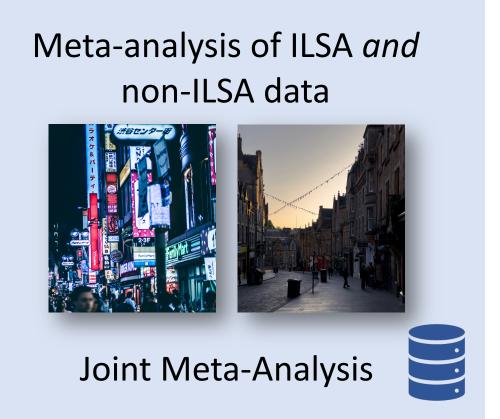

Status of Including ILSAs in Meta-Analyses

(Scherer, Siddiq, & Nilsen, 2024)

ILSAs cannot address all possible research questions in education.

Rapid systematic review


Meta-analyses on the relation between SES and student achievement and gender differences in achievement until 2022



Utilizing ILSAs in Meta-Analyses

(Scherer, Siddiq, & Nilsen, 2024)

Several approaches

Utilizing ILSAs in Meta-Analyses

(Campos et al., 2023; Brunner et al., 2023)

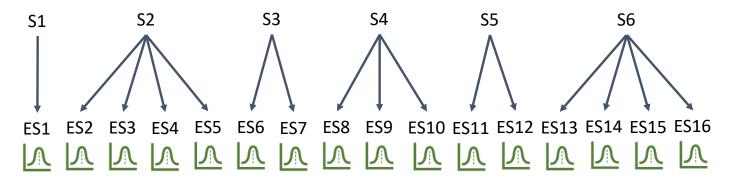
Two analytic stages

Weighting, stratification, multilevel structure, PVs, missing data

IPD

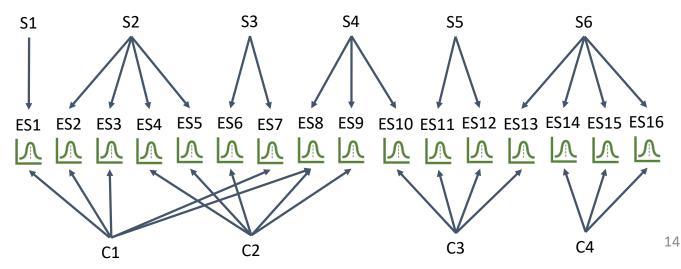
Effect sizes and sampling (co-)variances

Extraction Generation Conversion


Meta-analytic synthesis of effect sizes

Pooled effects Heterogeneity Moderators

Effect Size Multiplicity



Multiple effect sizes per study (e.g., multiple samples or measures)

Multiple effect sizes nested in primary studies

Multiple effect sizes nested in primary studies and countries

Effect Size Multiplicity

(Cheung, 2015; Campos et al., 2023; Pustejovsky & Tipton, 2021)

- (Random-Effects Meta-Analysis with Robust Variance Estimation
- (Multilevel Random-Effects Meta-Analysis

i: Effect sizes, *j*: Studies

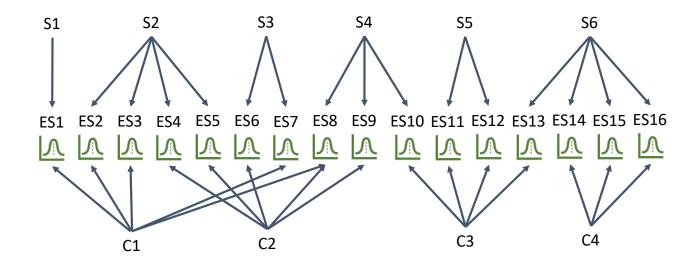
$$\theta_{ij} = \beta_R + u_{(2)ij} + u_{(3)j} + e_{ij}$$

$$e_{ij} \sim N(0, v_{ij}), u_{(2)ij} \sim N(0, \tau_{(2)}^2), u_{(3)j} \sim N(0, \tau_{(3)}^2)$$

Other multilevel and/or multivariate working models

UiO CREATE - Centre for Research on Equality in Education University of Oslo

Effect Size Multiplicity



(Campos et al., 2023; Scherer et al., 2024)

Cross-Classified Random-Effects Meta-Analysis

$$\theta_{i(jk)} = \beta_R + u_{(2)ij} + u_{(3)j} + u_{(3)k} + e_{i(jk)}$$

$$e_{i(jk)} \sim N(0, v_{i(jk)}), u_{(2)ij} \sim N(0, \tau_{(2)}^2), u_{(3)j} \sim N(0, \tau_{(3a)}^2), u_{(3)k} \sim N(0, \tau_{(3b)}^2)$$

Hierarchical *and* non-hierarchical data structure with two independent upper levels

UiO : CREATE - Centre for Research on Equality in Education

University of Oslo

Meta-Analysis of ILSA Data

Psychological Bulletin 2010, Vol. 136, No. 1, 103-127 © 2010 American Psychological Association 0033-2909/10/\$12.00 DOI: 10.1037/a0018053

Gender differences in mathematics achievement TIMSS & PISA 2003, 69 countries

Cross-National Patterns of Gender Differences in Mathematics:
A Meta-Analysis

Nicole M. Else-Quest Villanova University Janet Shibley Hyde University of Wisconsin—Madison

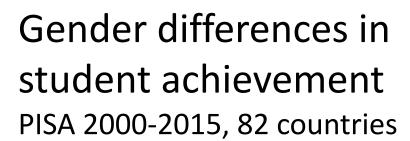
Marcia C. Linn University of California, Berkeley

TIMSS 2003

d = -0.01 95% *CI* [-0.05, 0.03]

PISA 2003

d = 0.1195% *CI* [0.09, 0.13]


Random-effects meta-analysis of standardized mean differences treating countries as "studies".

UiO : CREATE - Centre for Research on Equality in Education

University of Oslo

Meta-Analysis of ILSA Data

Journal of Educational Psychology

2022, Vol. 114, No. 5, 966–991 https://doi.org/10.1037/edu0000685

Top-Performing Math Students in 82 Countries: An Integrative Data Analysis of Gender Differences in Achievement, Achievement Profiles, and Achievement Motivation

Lena Keller^{1, 2}, Franzis Preckel³, Jacquelynne S. Eccles^{4, 5}, and Martin Brunner¹

Reading

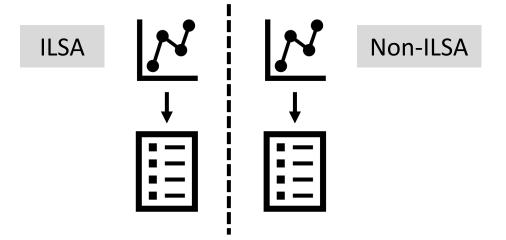
d = -0.2395% *CI* [-0.21, -0.25]

Mathematics

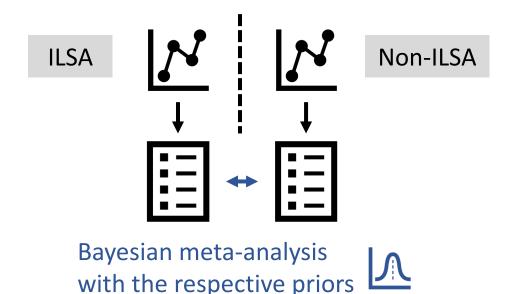
$$\bar{d}$$
 = 0.05 95% *CI* [0.03, 0.06]

Science

$$\bar{d}$$
 = 0.01
95% *CI* [-0.01, 0.02]


Integrative data analysis with the same analytic protocol to generate model-based effect sizes.

Separate Meta-Analyses of ILSA & Non-ILSA Data →


(Scherer, Siddig, & Nilsen, 2024; Harrer et al., 2021)

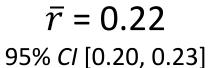
Two approaches

Separate Independent Meta-Analyses

Separate Meta-Analyses Informing Each Other

UiO : CREATE - Centre for Research on Equality in Education University of Oslo

Separate Meta-Analyses of ILSA & Non-ILSA Data ->> €


Relation between SES and student achievement

Non-ILSA data, 326 studies All PISA, TIMSS, and PIRLS cycles up to 2019

ILSA data

Non-ILSA data

$$\bar{r}$$
 = 0.28 95% *CI* [0.28, 0.29]

Educational Psychology Review (2022) 34:2867–2896 https://doi.org/10.1007/s10648-022-09689-y

REVIEW ARTICLE

Socioeconomic Status and Academic Achievement in Primary and Secondary Education: a Meta-analytic Review

Juan Liu¹ · Peng Peng² · Baobao Zhao¹ · Liang Luo³

Large-scale meta-analysis with small differences in the pooled effect sizes and precisions

Relation between SES and student achievement

Non-ILSA data

Table 3 Moderation effects on the correlations between SES and academic achievement for cross-sectional effect sizes

Measure	β	se	t	95% CI	р
Years	•				
Years2 (2000–2014) vs. Years1 (1990–1999)	.05	.02	2.05	[.001, .10]	.04
Years3 (2015–2021) vs. Years1 (1990–1999)	.06	.04	1.42	[02, .14]	.16
Years3 (2015–2021) vs. Years2 (2000–2014)	.01	.04	.21	[06, .08]	.84
GDP per capita	.02	.01	1.36	[01, .04]	.18
Net enrollment ratio	.01	.01	1.38	[01, .04]	.22
Duration of compulsory education	.01	.01	.51	[02, .03]	.61
GINI coefficient	.01	.01	.80	[02, .03]	.43
Grade level	.01	.01	.00	[.02, .05]	
Secondary education vs. primary education	02	.02	67	[06, .03]	.51
Measurement of SES	.02	.02	.07	[.00, .00]	.51
Education vs. occupation	03	.03	98	[09, .03]	.34
Family income vs. occupation	09	.04	-2.19	[18,01]	.03
Resources vs. occupation	01	.04	30	[10, .07]	.77
Composite SES index vs. occupation	02	.03	80	[09, .04]	.43
Education vs. family income	.06	.03	2.01	[.00, .13]	.05
Resources vs. family income	.08	.04	1.92	[01, .17]	.07
Composite SES index vs. family income	.07	.03	2.14	[004, .13]	.04
Education vs. Resources	02	.03	52	[09, .05]	.61
Composite SES index vs. Resources	01	.03	35	[08, .06]	.73
Composite SES index vs. education	.01	.02	.25	[04, .05]	.80
Subject of academic achievement					
STEM vs. language	.04	.02	1.96	[001, .09]	.05
General achievement vs. language	.03	.03	1.17	[02, .08]	.24
General achievement vs. STEM	01	.03	44	[07, .04]	.66

ILSA data

Table 4 Moderation effects on the correlations between SES and academic achievement for international arge-scale assessments

Correlation	β	SE	t	95% CI	p
Years					
Years2 (2000–2014) vs. Years1 (1990– 1999)	.04	.01	5.48	[.03, .06]	< .00
Years3 (2015–2021) vs. Years1 (1990– 1999)	.06	.01	7.72	[.05, .08]	<.00
Years3 (2015-2021) vs. Years2 (2000- 2014)	.02	.01	3.65	[.01, .03]	<.00
GDP per capita	003	.003	91	[01, .004]	.36
Net enrollment ratio	.01	.004	2.78	[.003, .02]	.01
Duration of compulsory education	.02	.003	7.46	[.02, .03]	<.00
GINI coefficient	001	.004	34	[01, .01]	.73
Grade level					
Secondary education vs. primary education	.02	.01	2.32	[.002, .03]	.02
Measurement of SES					
Education vs. occupation	02	.003	-6.40	[03,01]	<.00
Family income vs. occupation	.01	.01	1.06	[01, .03]	.29
Resources vs. occupation	.01	.004	2.74	[.003, .02]	.01
Composite SES index vs. occupation	.06	.003	23.93	[.06, .07]	<.00
Education vs. family income	03	.01	-3.01	[05,01]	.003
Resources vs. family income	001	.01	06	[02, .02]	.95
Composite SES index vs. family income	.05	.01	5.27	[.03, .07]	<.00
Education vs. resources	03	.003	-9.17	[04,02]	<.00
Composite SES index vs. resources	.05	.004	12.48	[.05, .06]	<.00
Composite SES index vs. education	.08	.004	21.74	[.08, .09]	<.00
Subject of academic achievement					
STEM vs. language	01	.005	-1.20	[02, .004]	.23

Educational Psychology Review (2022) 34:2867–2896 https://doi.org/10.1007/s10648-022-09689-y

REVIEW ARTICLE

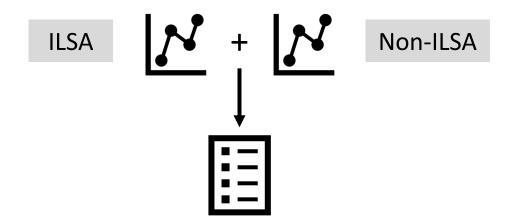
Socioeconomic Status and Academic Achievement in Primary and Secondary Education: a Meta-analytic Review

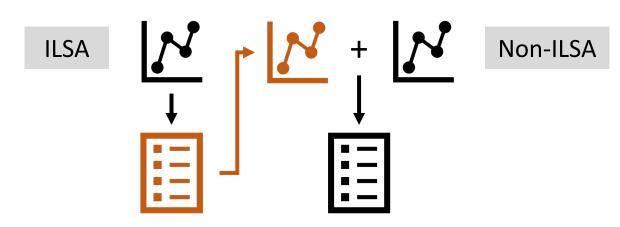
Juan Liu¹ · Peng Peng² · Baobao Zhao¹ · Liang Luo³

Differences in heterogeneity and moderator effects

For ILSA data:

Moderation by year of assessment, duration of compulsory education, and the types of SES measures


Joint Meta-Analysis of ILSA and non-ILSA Data


(Scherer, Siddig, & Nilsen, 2024)

Two approaches

Direct inclusion of ILSA data in **one step**

Direct inclusion of ILSA data in **multiple steps**

Pooled effect size and sampling variance

Joint Meta-Analysis of ILSA & Non-ILSA Data

Gender differences in digital skills

Non-ILSA data, 22 studies ICILS 2013 & 2018

Scherer et al.

Large-scale Assessments in Education (2024) 12:4
https://doi.org/10.1186/s40536-024-00191-1

Large-scale Assessments in Education

REVIEW

Open Access

The potential of international large-scale assessments for meta-analyses in education

Ronny Scherer^{1,2*}, Fazilat Siddiq³ and Trude Nilsen^{2,4}

Non-ILSA data

 \bar{g} = -0.12 95% *CI* [-0.04, -0.20]

ICILS 2013

 \bar{g} = -0.13 95% *CI* [-0.10, -0.17]

ICILS 2018

 \bar{g} = -0.21 95% *CI* [-0.15, -0.27] Separate Meta-Analyses for Reference

UiO CREATE – Centre for Research on Equality in Education University of Oslo

Joint Meta-Analysis of ILSA & Non-ILSA Data

Gender differences in digital skills

Non-ILSA data, 22 studies ICILS 2013 & 2018

Scherer et al. *Large-scale Assessments in Education* (2024) 12: https://doi.org/10.1186/s40536-024-00191-1

Large-scale Assessments in Education

REVIEW

Open Access

The potential of international large-scale assessments for meta-analyses in education

Ronny Scherer^{1,2*}, Fazilat Siddiq³ and Trude Nilsen^{2,4}

One-step inclusion

 \bar{g} = -0.13 95% *CI* [-0.05, -0.21]

Two-step inclusion

 \bar{g} = -0.12 95% *CI* [-0.05, -0.19]

Two approaches likely agree but have different levels of granularity.

Benefits and Challenges

(Scherer, Siddig, & Nilsen, 2024; Campos et al., 2023)

Benefits

- Reduced language/culture bias
- Overcoming small-sample issues
- Representative samples
- Rigorous psychometric quality

Challenges

- Complex extraction of effect sizes
- Different levels of inference
- Dominance of large-scale samples
- Complex meta-analytic models

UiO CREATE – Centre for Research on Equality in Education
University of Oslo

Some Conclusions

- 1 Including ILSA data is a way of improving meta-analytic evidence.
- 2 Flexibility and range of meta-analytic approaches.
- (3) Meta-analyses including ILSA data can address new RQs.

UiO CREATE – **Centre for Research on Equality in Education**

University of Oslo

Illustrative pictures were retrieved from unsplash.com

References

- Ahn, S., Ames, A. J., & Myers, N. D. (2012). A review of meta-analyses in education: Methodological strengths and weaknesses. *Review of Educational Research, 82*(4), 436–476. https://doi.org/10.3102/0034654312458162
- APA (2018). APA Dictionary of Psychology: Meta-analysis. https://dictionary.apa.org/meta-analysis
- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. John Wiley & Sons, Ltd.
- Brunner M, Keller L, Stallasch SE, et al. Meta-analyzing individual participant data from studies with complex survey designs: A tutorial on using the two-stage approach for data from educational large-scale assessments. *Res Syn Meth.* 2023; 14(1): 5-35. https://doi.org/10.1002/jrsm.1584
- Burgard, T., Bošnjak, M., & Studtrucker, R. (2021). Community-augmented meta-analyses (CAMAs) in psychology: Potentials and current systems. *Zeitschrift für Psychologie, 229*(1), 15–23. https://doi.org/10.1027/2151-2604/a000431
- Campos, D. G., Cheung, M. W. -L., & Scherer, R. (2023). A primer on synthesizing individual participant data obtained from complex sampling surveys: A two-stage IPD meta-analysis approach. Psychological Methods. https://doi.org/10.1037/met0000539
- Card, N. A. (2012). Applied meta-analysis for social science research. The Guilford Press.
- Cheung, M. W.-L. (2015). Meta-Analysis: A Structural Equation Modeling Approach. John Wiley & Sons Ltd.
- Drummond, A., & Sauer, j. (2020). Timesplitters: Playing video games before (but not after) school on weekdays is associated with poorer adolescent academic performance. A test of competing theoretical accounts. Computers & Education, 144, 103704. https://doi.org/10.1016/j.compedu.2019.103704
- Ferguson, C. J. (2015). Do Angry Birds Make for Angry Children? A Meta-Analysis of Video Game Influences on Children's and Adolescents' Aggression, Mental Health, Prosocial Behavior, and Academic Performance. *Perspectives on Psychological Science*, 10(5), 646-666. https://doi.org/10.1177/1745691615592234
- Harrer, M., Cuijpers, P., Furukawa, T.A., & Ebert, D.D. (2021). *Doing Meta-Analysis with R: A Hands-On Guide*. Boca Raton, FL and London: Chapman & Hall/CRC Press. ISBN 978-0-367-61007-4. https://bookdown.org/MathiasHarrer/Doing Meta Analysis in R/#citing-this-guide
- Polanin, J. R., Maynard, B. R., & Dell, N. A. (2017). Overviews in education research: A systematic review and analysis. *Review of Educational Research*, 87(1), 172–203. https://doi.org/10.3102/0034654316631117
- Powers, K.L., Brooks, P.J., Aldrich, N.J. *et al.* Effects of video-game play on information processing: A meta-analytic investigation. *Psychon Bull Rev* **20**, 1055–1079 (2013). https://doi.org/10.3758/s13423-013-0418-z
- Pustejovsky, J.E., Tipton, E. Meta-analysis with Robust Variance Estimation: Expanding the Range of Working Models. *Prev Sci* 23, 425–438 (2022). https://doi.org/10.1007/s11121-021-01246-3
- Sala, G., Tatlidil, K. S., & Gobet, F. (2018). Video game training does not enhance cognitive ability: A comprehensive meta-analytic investigation. *Psychological Bulletin, 144*(2), 111–139. https://doi.org/10.1037/bul0000139
- Scherer, R., Siddiq, F. & Nilsen, T. The potential of international large-scale assessments for meta-analyses in education. *Large-scale Assess Educ* **12**, 4 (2024). https://doi.org/10.1186/s40536-024-00191-1
- Viechtbauer W (2010). "Conducting meta-analyses in R with the metafor package." Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03

UiO : CREATE - Centre for Research on Equality in Education
University of Oslo

Appendix

Effect Size Multiplicity

(Scherer et al., 2024; Viechtbauer, 2010)

Cross-Classified Random-Effects Meta-Analysis

Implementation in the R package metafor

```
## Model estimation

CCREM5 <- rma.mv(d,

vd,

random = list(~ 1 | StudyID/ESID,

~ 1 | factor(Country)),

method = "REML",

data = dat)

Nesting of effects sizes in

countries

Nesting of effects sizes in

countries
```

Meta-Analysis of ILSA Data

Gray et al. Large-scale Assess Educ (2019) 7:2 https://doi.org/10.1186/s40536-019-0070-9

 Large-scale Assessments in Education

Gender differences in variability in student achievement All PISA, TIMSS, and PIRLS cycles up to 2015, about 2500 effect sizes

RESEARCH

Open Access

Sex differences in variability across nations in reading, mathematics and science: a meta-analytic extension of Baye and Monseur (2016)

Helen Gray¹, Andrew Lyth¹, Catherine McKenna¹, Susan Stothard³, Peter Tymms¹ and Lee Copping^{2*}

Reading

 \overline{VR} = 1.15 95% *CI* [1.15, 1.16]

Mathematics

 \overline{VR} = 1.12 95% *CI* [1.11, 1.12]

Science

 \overline{VR} = 1.13 95% *CI* [1.12, 1.13]

Large-scale metaanalysis of effect sizes beyond correlations and standard mean differences.

Effect size: Variance ratio VR