Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Giant lasing effect in ma… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Giant lasing effect in magnetic nanoconductors

Artikel i vetenskaplig tidskrift
Författare Anatoli M. Kadigrobov
Zdravko Ivanov
Tord Claeson
Robert I. Shekhter
Mats Jonson
Publicerad i Europhysics Letters
Volym 67
Nummer/häfte 6
Sidor 948-954
ISSN 1286-4854
Publiceringsår 2004
Publicerad vid Institutionen för fysik (GU)
Sidor 948-954
Språk en
Länkar dx.doi.org/10.1209/epl/i2004-10159-...
Ämnesord electron spin polarisation, ferromagnetic materials, magnetic tunnelling, magnetisation, population inversion, solid lasers
Ämneskategorier Fysik

Sammanfattning

We propose a new principle for a compact solid-state laser in the 1–100 THz regime. This is a frequency range where attempts to fabricate small-size lasers up to now have met severe technical problems. The proposed laser is based on a new mechanism for creating spin-flip processes in ferromagnetic conductors. The mechanism is due to the interaction of light with conduction electrons; the interaction strength, being proportional to the large exchange energy, exceeds the Zeeman interaction by orders of magnitude. On the basis of this interaction, a giant lasing effect is predicted in a system where a population inversion has been created by tunneling injection of spin-polarized electrons from one ferromagnetic conductor to another—the magnetization of the two ferromagnets having different orientations. Using experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization, we show the laser frequency to be in the range 1–100 THz. The optical gain is estimated to be of order 107 cm−1, which exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental study is proposed and discussed.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?