Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Factors influencing organ… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Factors influencing organic carbon recycling and burial in Skagerrak sediments

Artikel i vetenskaplig tidskrift
Författare H. Ståhl
Anders Tengberg
Jenny Brunnegård
E. Björnbom
T. L. Forbes
A. B. Josefson
H. G. Kaberi
I. M. Karle Hassellöv
F. Olsgard
P. Roos
Per Hall
Publicerad i Journal of Marine Research
Volym 62
Nummer/häfte 6
Sidor 867-907
Publiceringsår 2004
Publicerad vid Institutionen för kemi
Sidor 867-907
Språk en
Länkar <Go to ISI>://000226508200006
Ämnesord CONTINENTAL-MARGIN SEDIMENTS, NORTHEASTERN NORTH-SEA, PORCUPINE, ABYSSAL-PLAIN, LONG-ISLAND SOUND, MARINE-SEDIMENTS, CHLOROPHYLL-A, SULFATE REDUCTION, OXYGEN-UPTAKE, ANAEROBIC MINERALIZATION, COASTAL, ENVIRONMENT
Ämneskategorier Kemi

Sammanfattning

Different factors influencing recycling and burial rates of organic carbon (OC) were investigated in the continental margin sediments of the Skagerrak (NE North Sea). Two different areas, one in the southern and one in the northeastern part of the Skagerrak were visited shortly after a spring bloom (March 1999) and in late summer (August 2000). Results suggested that: (1) Organic carbon oxidation rates (C-ox) (2.2-18 mmol Cm-2 d(-1)) were generally larger than the O-2 uptake rates (1.9-25 mmol m(-2) d(-1)). Both rates were measured in situ using a benthic lander. A mean apparent respiration ratio (C-ox:O-2corr) of 1.3 +/- 0.5 was found, indicating some long-term burial of reduced inorganic substances in these sediments. Measured O-2, fluxes increased linearly with increasing C-ox rates during the late summer cruise but not on the, early spring cruise, indicating a temporal uncoupling of anaerobic mineralization and reoxidation of reduced substances. (2) Dissolved organic carbon (DOC) fluxes (0.2-1.0 mmol Cm-2 d(-1)) constituted 3-10% of the C-ox rates and were positively correlated with the latter, implying that net DOC production rates were proportional to the overall sediment OC remineralization rates. (3) Chlorophyll a (Chl-a) concentrations in the sediment were significantly higher in early spring compared to late summer. The measured C-ox rates, but not O-2 fluxes, showed a strong positive correlation with the Chl-a inventories in the top 3 cm of the sediment. (4) Although no relationship was found between the benthic fluxes and the macrofaunal biomass in the chambers, total in situ measured dissolved inorganic carbon (C-T) fluxes were 1-5.4 times higher than diffusive mediated C-T fluxes, indicating that macrofauna have a significant impact on benthic exchange rates of OC remineralization products in Skagerrak sediments. (5) OC burial fluxes were generally higher in northeastern Skagerrak than in the southern part. The same pattern was observed for burial efficiencies, with annual means of similar to62% and similar to43% for the two areas respectively. (6) On a basin-wide scale, there was a significant positive linear correlation between the burial efficiencies and sediment accumulation rates. (7) The calculated particulate organic carbon (POC) deposition, from benthic flux and burial measurements, was only 24-78% of the sediment trap measured POC deposition, indicating a strong near-bottom lateral transport and resuspension of POC. (8) A larger fraction of the laterally advected material of lower quality seemed to settle in the northeastern Skagerrak rather than in the southern Skagerrak. (9) Skagerrak sediments, especially in the northeastern part, act as an efficient net sink for organic carbon, even in a global continental margin context.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?