Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

The effect of particle-h… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

The effect of particle-hole interaction on the XPS core-hole spectrum

Artikel i vetenskaplig tidskrift
Författare Masahide Ohno
Lennart Sjögren
Publicerad i J. Electron Spectrosc. Relat. Phenom.
Volym 134
Nummer/häfte 1
Sidor 35-47
ISSN 0368-2048
Publiceringsår 2004
Publicerad vid Institutionen för fysik (GU)
Sidor 35-47
Språk en
Länkar dx.doi.org/10.1016/j.elspec.2003.09...
Ämnesord X-ray photoelectron spectroscopy; Many-body effect; Coster–Kronig transition; Core-hole screening
Ämneskategorier Fysik, Atom- och molekylfysik och optik, Atomfysik

Sammanfattning

How the effective particle–hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster–Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy).

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?