Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Micropipet Writing Techni… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Micropipet Writing Technique for Production of Two-Dimensional Lipid Bilayer Nanotube-Vesicle Networks on Functionalized and Patterned Surfaces

Artikel i vetenskaplig tidskrift
Författare Kristin Sott
Mattias Karlsson
Johan Pihl
Johan Hurtig
Tatsiana Lobovkina
Owe Orwar
Publicerad i Langmuir
Volym 19
Nummer/häfte 9
Sidor 3904-3910
ISSN 0743-7463
Publiceringsår 2003
Publicerad vid Institutionen för fysik (GU)
Sidor 3904-3910
Språk en
Länkar dx.doi.org/10.1021/la026947r
Ämneskategorier Biofysikalisk kemi, Kemi

Sammanfattning

We present a micropipet-assisted writing technique for formation of two-dimensional networks of phospholipid vesicles and nanotubes on functionalized and patterned substrates. The substrates are patterned with vesicle-adhesive circular spots (5-7.5 µm in diameter) consisting of a basal layer of biotin on gold and an apical coating of NeutrAvidin in a sandwich manner. The area surrounding the adhesive spots is coated with a phosphatidylcholine bilayer membrane, preventing protein and liposome adhesion. Networks were formed by aspirating a biotin-functionalized giant unilamellar or multilamellar liposome (5-50 µm in diameter) into a ~3 µm inner diameter borosilicate glass micropipet. By using a pressurized-air microejection system, a portion of the liposome is then ejected back into the solution while forming a first vesicle ~3 µm in diameter. This vesicle is placed on an adhesive spot. When the micropipet is moved, a nanotube connection is formed from the first vesicle and is pulled to the next adhesive spot where a second vesicle is ejected. This procedure can then be repeated until the lipid material is consumed in the pipet. The method allows for formation of networks with a large number of nodes and vertexes with well-defined geometry and surface adhesion, and represents a first step toward very large scale integration of nanotube-vesicle networks in, for example, nanofluidic applications.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?