Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Detection of Turning Poin… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Detection of Turning Points in Business Cycles

Artikel i vetenskaplig tidskrift
Författare Eva M. Andersson
David Bock
Marianne Frisén
Publicerad i Journal of Business Cycle Measurement and Analysis
Volym 1
Nummer/häfte 1
Sidor 93-108
Publiceringsår 2004
Publicerad vid Statistiska forskningsenheten
Sidor 93-108
Språk en
Länkar www.oecdwash.org/PUBS/PERIOD/jbcma_...
Ämnesord Business cycle, Monitoring, Optimal, Likelihood ratio, HMM, Non-parametric
Ämneskategorier Statistik

Sammanfattning

Methods for continuously monitoring business cycles are compared. A turn in a leading index can be used to predict a turn in the business cycle. Three likelihood based methods for turning point detection are compared in detail by using the theory of statistical surveillance and by simulations. One of the methods is a parametric likelihood ratio method. Another includes a non-parametric estimation procedure. The third is based on a Hidden Markov Model. Evaluations are made of several features such as knowledge of shape and parameters of the curve, types and probabilities of transitions and smoothing. Results on the expected delay time [of](to) a correct alarm and the predictive value of an alarm are discussed. The three methods are also used to analyze an actual data set (of) [for] a period of (the) Swedish industrial production. The relative merits of evaluation of methods by one real data set or by simulations are discussed.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?