Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Identifying the relative … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Identifying the relative importance of predictors of survival in out of hospital cardiac arrest: a machine learning study.

Artikel i vetenskaplig tidskrift
Författare Nooraldeen Al-Dury
Annica Ravn-Fischer
Jacob Hollenberg
Johan Israelsson
Per Norberg
Anneli Strömsöe
Christer Axelsson
Johan Herlitz
Araz Rawshani
Publicerad i Scandinavian journal of trauma, resuscitation and emergency medicine
Volym 28
Nummer/häfte 1
ISSN 1757-7241
Publiceringsår 2020
Publicerad vid Institutionen för medicin
Institutionen för medicin, avdelningen för molekylär och klinisk medicin
Språk en
Länkar dx.doi.org/10.1186/s13049-020-00742...
www.ncbi.nlm.nih.gov/entrez/query.f...
Ämneskategorier Kardiovaskulär medicin

Sammanfattning

Studies examining the factors linked to survival after out of hospital cardiac arrest (OHCA) have either aimed to describe the characteristics and outcomes of OHCA in different parts of the world, or focused on certain factors and whether they were associated with survival. Unfortunately, this approach does not measure how strong each factor is in predicting survival after OHCA.To investigate the relative importance of 16 well-recognized factors in OHCA at the time point of ambulance arrival, and before any interventions or medications were given, by using a machine learning approach that implies building models directly from the data, and arranging those factors in order of importance in predicting survival.Using a data-driven approach with a machine learning algorithm, we studied the relative importance of 16 factors assessed during the pre-hospital phase of OHCA. We examined 45,000 cases of OHCA between 2008 and 2016.Overall, the top five factors to predict survival in order of importance were: initial rhythm, age, early Cardiopulmonary Resuscitation (CPR, time to CPR and CPR before arrival of EMS), time from EMS dispatch until EMS arrival, and place of cardiac arrest. The largest difference in importance was noted between initial rhythm and the remaining predictors. A number of factors, including time of arrest and sex were of little importance.Using machine learning, we confirm that the most important predictor of survival in OHCA is initial rhythm, followed by age, time to start of CPR, EMS response time and place of OHCA. Several factors traditionally viewed as important, e.g. sex, were of little importance.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?