Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Experimental and Computat… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Experimental and Computational Study of Molecular Water Interactions with Condensed Nopinone Surfaces Under Atmospherically Relevant Conditions

Artikel i vetenskaplig tidskrift
Författare Sofia M. Johansson
Josip Lovric
Xiangrui Kong
Erik S Thomson
Mattias Hallquist
Jan B. C. Pettersson
Publicerad i Journal of Physical Chemistry A
Volym 124
Nummer/häfte 18
Sidor 3652-3661
ISSN 1089-5639
Publiceringsår 2020
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 3652-3661
Språk en
Länkar dx.doi.org/10.1021/acs.jpca.9b10970
Ämneskategorier Kemi

Sammanfattning

Water and organics are omnipresent in the atmosphere, and their interactions influence the properties and lifetime of both aerosols and clouds. Nopinone is one of the major reaction products formed from beta-pinene oxidation, a compound emitted by coniferous trees, and it has been found in both gas and particle phases in the atmosphere. Here, we investigate the interactions between water molecules and nopinone surfaces by combining environmental molecular beam (EMB) experiments and molecular dynamics (MD) simulations. The EMB method enables detailed studies of the dynamics and kinetics of water interacting with solid nopinone at 170-240 K and graphite coated with a molecularly thin nopinone layer at 200-270 K. MD simulations that mimic the experimental conditions have been performed to add insights into the molecular-level processes. Water molecules impinging on nopinone surfaces are efficiently trapped (>= 97%), and only a minor fraction scatters inelastically while maintaining 35-65% of their incident kinetic energy (23.2 +/- 1.0 kJ mol(-1)). A large fraction (60-80%) of the trapped molecules desorbs rapidly, whereas a small fraction (20-40%) remains on the surface for more than 10 ms. The MD calculations confirm both rapid water desorption and the occurrence of strongly bound surface states. A comparison of the experimental and computational results suggests that the formation of surface-bound water clusters enhances water uptake on the investigated surfaces.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?