Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Monitoring calcium-induce… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Monitoring calcium-induced epidermal differentiation in vitro using multiphoton microscopy

Artikel i vetenskaplig tidskrift
Författare Monika Malak
Julie Grantham
Marica B Ericson
Publicerad i Journal of Biomedical Optics
Volym 25
Nummer/häfte 7
Sidor 071205
ISSN 1083-3668
Publiceringsår 2020
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 071205
Språk en
Länkar https://doi.org/10.1117/1.JBO.25.7....
Ämnesord autofluorescence, epidermal differentiation, in vitro modeling, keratinocytes, live imaging, multiphoton microscopy
Ämneskategorier Dermatologi och venereologi, Optik, Cellbiologi, Molekylärbiologi, Biologiska vetenskaper

Sammanfattning

SIGNIFICANCE: Research in tissue engineering and in vitro organ formation has recently intensified. To assess tissue morphology, the method of choice today is restricted primarily to histology. Thus novel tools are required to enable noninvasive, and preferably label-free, three-dimensional imaging that is more compatible with futuristic organ-on-a-chip models. AIM: We investigate the potential for using multiphoton microscopy (MPM) as a label-free in vitro approach to monitor calcium-induced epidermal differentiation. APPROACH: In vitro epidermis was cultured at the air-liquid interface in varying calcium concentrations. Morphology and tissue architecture were investigated using MPM based on visualizing cellular autofluorescence. RESULTS: Distinct morphologies corresponding to epidermal differentiation were observed. In addition, Ca2  +  -induced effects could be distinguished based on the architectural differences in stratification in the tissue cultures. CONCLUSIONS: Our study shows that MPM based on cellular autofluorescence enables visualization of Ca2  +  -induced differentiation in epidermal skin models in vitro. The technique has potential to be further adapted as a noninvasive, label-free, and real-time tool to monitor tissue regeneration and organ formation in vitro.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?