Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Altered groundwater disch… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal

Artikel i vetenskaplig tidskrift
Författare K. Davis
Isaac R. Santos
A. K. Perkins
J. R. Webb
J. Gleeson
Publicerad i Estuarine, Coastal and Shelf Science
Volym 235
ISSN 0272-7714
Publiceringsår 2020
Publicerad vid Institutionen för marina vetenskaper
Språk en
Länkar dx.doi.org/10.1016/j.ecss.2019.1065...
Ämnesord Blue carbon, Carbon sequestration, Coastal carbon, Hydrology, Outgassing, alkalinity, biogeochemical cycle, canal, carbon dioxide, carbon flux, discharge, quantitative analysis, Australia, Bribie Island, Queensland
Ämneskategorier Marin ekologi


Residential canal systems are becoming increasingly popular with the rising demand for absolute coastal waterfront properties. We hypothesize that canals alter groundwater-surface water connectivity and related carbon fluxes into coastal surface waters. Here, we quantified submarine groundwater discharge (SGD) in a residential canal system on Bribie Island (Australia) and associated carbon fluxes. SGD rates estimated from a radon (222Rn) mass balance model were 3.1 ± 1.5 cm d−1. These fluxes delivered 68 ± 44 and 70 ± 48 mmol m−2 d−1 of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) into the canal, respectively. Carbon dioxide (CO2) emissions to the atmosphere ranged from 15 to 28 mmol m−2 d−1. Multiple lines of evidence, including flux estimates and groundwater observations, converge to the conclusion that SGD was a major source of DOC and free CO2, but not carbonate alkalinity nor DIC to canal surface waters. In comparison to mangrove tidal creeks that often precede canals, the canal had (1) lower tidally-driven saline groundwater exchange rates but higher fresh groundwater discharge, (2) lower CO2 emissions to the atmosphere; and (3) acted as a driver rather than a buffer of local ocean acidification. These differences seem to be driven by the replacement of intertidal wetland vegetation with urban areas that prevent soil carbon accumulation and related biogeochemical processes around the canals. We suggest that decisions on canal construction should consider potential changes to groundwater-derived soil carbon losses and carbon cycling in receiving coastal waters. © 2020 Elsevier Ltd

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?