Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Vicarious Value Learning … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Vicarious Value Learning and Inference in Human-Human and Human-Robot Interaction

Paper i proceeding
Författare Robert Lowe
Alexander Almér
Pierre Gander
Christian Balkenius
Publicerad i 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos, ACIIW 2019
Publiceringsår 2019
Publicerad vid Institutionen för tillämpad informationsteknologi (GU)
Språk en
Ämnesord Artificial General Intelligence, Humanoid Robots, Reinforcement Learning, Social Affective Appraisal
Ämneskategorier Kognitionsforskning, Kognitionsvetenskap, Psykologi, Robotteknik och automation, Datalogi

Sammanfattning

© 2019 IEEE. Among the biggest challenges for researchers of human-robot interaction is imbuing robots with lifelong learning capacities that allow efficient interactions between humans and robots. In order to address this challenge we are developing computational mechanisms for a humanoid robotic agent utilizing both system 1 and system 2-like cognitive processing capabilities. At the core of this processing is a Social Affective Appraisal model that allows for vicarious value learning and inference. Using a multi-dimensional reinforcement learning approach the robotic agent learns affective value-based functions (system 1). This learning can ground representations of affective relations (predicates) relevant to interacting agents. In this article we discuss the existing theoretical basis for developing our neural network model as a system 1-like process. We also discuss initial ideas for developing system 2-like top-down/generative affective (semantic relation-based) processing. The aim of the symbolic-connectionist architectural development is to promote autonomous capabilities in humanoid robots for interacting efficiently/intelligently (recombinant application of learned associations) with humans in changing and challenging environments.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?