Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Protein aggregate formati… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Protein aggregate formation permits millennium-old brain preservation

Artikel i vetenskaplig tidskrift
Författare A. Petzold
C. H. Lu
M. Groves
Johan Gobom
Henrik Zetterberg
G. Shaw
S. O'Connor
Publicerad i Journal of the Royal Society Interface
Volym 17
Nummer/häfte 162
ISSN 1742-5689
Publiceringsår 2020
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för psykiatri och neurokemi
Språk en
Länkar dx.doi.org/10.1098/rsif.2019.0775
Ämnesord biomarker, neurofilament, glial fibrillary acidic protein, protein, aggregation, neurodegeneration, archaeology, multiple-sclerosis, neurofilament proteins, alzheimers-disease, nf-h, phosphorylation, biomarker, markers, elisa, transmission, instability, Science & Technology - Other Topics
Ämneskategorier Neurovetenskaper

Sammanfattning

Human proteins have not been reported to survive in free nature, at ambient temperature, for long periods. Particularly, the human brain rapidly dissolves after death due to auto-proteolysis and putrefaction. The here presented discovery of 2600-year-old brain proteins from a radiocarbon dated human brain provides new evidence for extraordinary long-term stability of non-amyloid protein aggregates. Immunoelectron microscopy confirmed the preservation of neurocytoarchitecture in the ancient brain, which appeared shrunken and compact compared to a modern brain. Resolution of intermediate filaments (IFs) from protein aggregates took 2-12 months. Immunoassays on micro-dissected brain tissue homogenates revealed the preservation of the known protein topography for grey and white matter for type III (glial fibrillary acidic protein, GFAP) and IV (neurofilaments, Nfs) IFs. Mass spectrometry data could be matched to a number of peptide sequences, notably for GFAP and Nfs. Preserved immunogenicity of the prehistoric human brain proteins was demonstrated by antibody generation (GFAP, Nfs, myelin basic protein). Unlike brain proteins, DNA was of poor quality preventing reliable sequencing. These long-term data from a unique ancient human brain demonstrate that aggregate formation permits for the preservation of brain proteins for millennia.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?