Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Unsupervised Learning fro… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Unsupervised Learning from Motion Sensor Data to Assess the Condition of Patients with Parkinson's Disease

Paper i proceeding
Författare T. Matic
S. Aghanavesi
M. Memedi
D. Nyholm
Filip Bergquist
V. Groznik
J. Zabkar
A. Sadikov
Publicerad i Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science, vol 11526
ISBN 978-3-030-21642-9
Förlag Springer
Publiceringsår 2019
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för farmakologi
Språk en
Länkar dx.doi.org/10.1007/978-3-030-21642-...
Ämnesord Unsupervised learning, Motion sensor, Parkinson's disease, Objective, evaluation, Patient monitoring, Bradykinesia, Dyskinesia
Ämneskategorier Neurologi

Sammanfattning

Parkinson's disease (PD) is a chronic neurodegenerative disorder that predominantly affects the patient's motor system, resulting in muscle rigidity, bradykinesia, tremor, and postural instability. As the disease slowly progresses, the symptoms worsen, and regular monitoring is required to adjust the treatment accordingly. The objective evaluation of the patient's condition is sometimes rather difficult and automated systems based on various sensors could be helpful to the physicians. The data in this paper come from a clinical study of 19 advanced PD patients with motor fluctuations. The measurements used come from the motion sensors the patients wore during the study. The paper presents an unsupervised learning approach applied on this data with the aim of checking whether sensor data alone can indicate the patient's motor state. The rationale for the unsupervised approach is that there was significant inter-physician disagreement on the patient's condition (target value for supervised machine learning). The input to clustering came from sensor data alone. The resulting clusters were matched against the physicians' estimates showing relatively good agreement.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?