Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

3D Simulations of Intrace… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

3D Simulations of Intracerebral Hemorrhage Detection Using Broadband Microwave Technology

Artikel i vetenskaplig tidskrift
Författare A. Fhager
S. Candefjord
Mikael Elam
M. Persson
Publicerad i Sensors
Volym 19
Nummer/häfte 16
Publiceringsår 2019
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap
Språk en
Länkar dx.doi.org/10.3390/s19163482
Ämnesord intracranial hemorrhage, stroke, machine learning, subspace classifier, microwave technology, FDTD, selection bias, model, diagnosis, phantom, system, Chemistry, Electrochemistry, Instruments & Instrumentation
Ämneskategorier Klinisk medicin

Sammanfattning

Early, preferably prehospital, detection of intracranial bleeding after trauma or stroke would dramatically improve the acute care of these large patient groups. In this paper, we use simulated microwave transmission data to investigate the performance of a machine learning classification algorithm based on subspace distances for the detection of intracranial bleeding. A computational model, consisting of realistic human head models of patients with bleeding, as well as healthy subjects, was inserted in an antenna array model. The Finite-Difference Time-Domain (FDTD) method was then used to generate simulated transmission coefficients between all possible combinations of antenna pairs. These transmission data were used both to train and evaluate the performance of the classification algorithm and to investigate its ability to distinguish patients with versus without intracranial bleeding. We studied how classification results were affected by the number of healthy subjects and patients used to train the algorithm, and in particular, we were interested in investigating how many samples were needed in the training dataset to obtain classification results better than chance. Our results indicated that at least 200 subjects, i.e., 100 each of the healthy subjects and bleeding patients, were needed to obtain classification results consistently better than chance (p < 0.05 using Student's t-test). The results also showed that classification results improved with the number of subjects in the training data. With a sample size that approached 1000 subjects, classifications results characterized as area under the receiver operating curve (AUC) approached 1.0, indicating very high sensitivity and specificity.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?