Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Phase 3 diagnostic evalua… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Phase 3 diagnostic evaluation of a smart tablet serious game to identify autism in 760 children 3-5 years old in Sweden and the United Kingdom

Artikel i vetenskaplig tidskrift
Författare L. Millar
A. McConnachie
H. Minnis
P. Wilson
Lucy Thompson
A. Anzulewicz
K. Sobota
P. Rowe
Christopher Gillberg
J. Delafield-Butt
Publicerad i Bmj Open
Volym 9
Nummer/häfte 7
ISSN 2044-6055
Publiceringsår 2019
Publicerad vid Gillbergcentrum
Språk en
Länkar https://doi.org/10.1136/bmjopen-201...
Ämnesord autism, diagnosis, digital health, machine learning, motor control, smart technology
Ämneskategorier Psykiatri

Sammanfattning

Introduction Recent evidence suggests an underlying movement disruption may be a core component of autism spectrum disorder (ASD) and a new, accessible early biomarker. Mobile smart technologies such as iPads contain inertial movement and touch screen sensors capable of recording subsecond movement patterns during gameplay. A previous pilot study employed machine learning analysis of motor patterns recorded from children 3-5 years old. It identified those with ASD from age-matched and gender-matched controls with 93% accuracy, presenting an attractive assessment method suitable for use in the home, clinic or classroom. Methods and analysis This is a phase III prospective, diagnostic classification study designed according to the Standards for Reporting Diagnostic Accuracy Studies guidelines. Three cohorts are investigated: children typically developing (TD); children with a clinical diagnosis of ASD and children with a diagnosis of another neurodevelopmental disorder (OND) that is not ASD. The study will be completed in Glasgow, UK and Gothenburg, Sweden. The recruitment target is 760 children (280 TD, 280 ASD and 200 OND). Children play two games on the iPad then a third party data acquisition and analysis algorithm (Play.Care, Harimata) will classify the data as positively or negatively associated with ASD. The results are blind until data collection is complete, when the algorithm's classification will be compared against medical diagnosis. Furthermore, parents of participants in the ASD and OND groups will complete three questionnaires: Strengths and Difficulties Questionnaire; Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations Questionnaire and the Adaptive Behavioural Assessment System-3 or Vineland Adaptive Behavior Scales-II. The primary outcome measure is sensitivity and specificity of Play.Care to differentiate ASD children from TD children. Secondary outcomes measures include the accuracy of Play.Care to differentiate ASD children from OND children. Ethics and dissemination This study was approved by the West of Scotland Research Ethics Service Committee 3 and the University of Strathclyde Ethics Committee. Results will be disseminated in peer-reviewed publications and at international scientific conferences. Trial registration number NCT03438994; Pre-results. © 2019 Author(s).

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?