Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Quantum error correction … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Quantum error correction for the toric code using deep reinforcement learning

Artikel i vetenskaplig tidskrift
Författare Philip Andreasson
Joel Johansson
Simon Liljestrand
Mats Granath
Publicerad i Quantum
Volym 3
Sidor 183
ISSN 2521-327X
Publiceringsår 2019
Publicerad vid Institutionen för fysik (GU)
Sidor 183
Språk en
Länkar https://doi.org/10.22331/q-2019-09-...
Ämneskategorier Lågtemperaturfysik, Nanoteknik

Sammanfattning

We implement a quantum error correction algorithm for bit-flip errors on the topological toric code using deep reinforcement learning. An action-value Q-function encodes the discounted value of moving a defect to a neighboring site on the square grid (the action) depending on the full set of defects on the torus (the syndrome or state). The Q-function is represented by a deep convolutional neural network. Using the translational invariance on the torus allows for viewing each defect from a central perspective which significantly simplifies the state space representation independently of the number of defect pairs. The training is done using experience replay, where data from the algorithm being played out is stored and used for mini-batch upgrade of the Q-network. We find performance which is close to, and for small error rates asymptotically equivalent to, that achieved by the Minimum Weight Perfect Matching algorithm for code distances up to d=7. Our results show that it is possible for a self-trained agent without supervision or support algorithms to find a decoding scheme that performs on par with hand-made algorithms, opening up for future machine engineered decoders for more general error models and error correcting codes.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?