Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Adaptive damage retention… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Adaptive damage retention mechanism enables healthier yeast population

Artikel i vetenskaplig tidskrift
Författare Qasim Ali
Riccardo Dainese
Marija Cvijovic
Publicerad i Journal of Theoretical Biology
Volym 473
Sidor 52-66
ISSN 0022-5193
Publiceringsår 2019
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 52-66
Språk en
Länkar dx.doi.org/10.1016/j.jtbi.2019.04.0...
Ämnesord Yeast, Asymmetrical division, Damage retention, Dynamical modelling, Pedigree-tree model, asymmetric inheritance, genetic assimilation, daughter cells, protein, segregation, aggregation, senescence, longevity, evolution, organism, Life Sciences & Biomedicine - Other Topics, Mathematical & Computational, Biology, gel le, 1963, proceedings of the national academy of sciences of the united states of america, v49, p517
Ämneskategorier Matematik

Sammanfattning

During cytokinesis in budding yeast (Saccharomyces cerevisiae) damaged proteins are distributed asymmetrically between the daughter and the mother cell. Retention of damaged proteins is a crucial mechanism ensuring a healthy daughter cell with full replicative potential and an ageing mother cell. However, the protein quality control (PQC) system is tuned for optimal reproduction success which suggests optimal health and size of the population, rather than long-term survival of the mother cell. Modelling retention of damage as an adaptable mechanism, we propose two damage retention strategies to find an optimal way of decreasing damage retention efficiency to maximize population size and minimize the damage in the individual yeast cell. A pedigree model is used to investigate the impact of small variations in the strategies over the whole population. These impacts are based on the altruistic effects of damage retention mechanism and are measured by a cost function whose minimum value provides the optimal health and size of the population. We showed that fluctuations in the cost function allow yeast cell to continuously vary its strategy, suggesting that optimal reproduction success is a local minimum of the cost function. Our results suggest that a rapid decrease in the efficiency of damage retention, at the time when the mother cell is almost exhausted, produces fewer daughters with high levels of damaged proteins. In addition, retaining more damage during the early divisions increases the number of healthy daughters in the population. (C) 2019 Elsevier Ltd. All rights reserved.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?