Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Digital video microscopy … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Digital video microscopy enhanced by deep earning

Artikel i vetenskaplig tidskrift
Författare Saga Helgadottir
Aykut Argun
Giovanni Volpe
Publicerad i Optica
Volym 6
Nummer/häfte 4
Sidor 506-513
ISSN 2334-2536
Publiceringsår 2019
Publicerad vid Institutionen för fysik (GU)
Sidor 506-513
Språk en
Länkar dx.doi.org/10.1364/optica.6.000506
Ämnesord particle tracking, neural-networks, localization, Optics
Ämneskategorier Fysik

Sammanfattning

Single particle tracking is essential in many branches of science and technology, from the measurement of biomo-lecular forces to the study of colloidal crystals. Standard methods rely on algorithmic approaches; by fine-tuning several user-defined parameters, these methods can be highly successful at tracking a well-defined kind of particle under low-noise conditions with constant and homogenous illumination. Here, we introduce an alternative datadriven approach based on a convolutional neural network, which we name DeepTrack. We show that DeepTrack outperforms algorithmic approaches, especially in the presence of noise and under poor illumination conditions. We use DeepTrack to track an optically trapped particle under very noisy and unsteady illumination conditions, where standard algorithmic approaches fail. We then demonstrate how DeepTrack can also be used to track multiple particles and non-spherical objects such as bacteria, also at very low signal-to-noise ratios. In order to make DeepTrack readily available for other users, we provide a Python software package, which can be easily personalized and optimized for specific applications. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?