Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Integrating experimental … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Integrating experimental and distribution data to predict future species patterns

Artikel i vetenskaplig tidskrift
Författare J. Kotta
J. Vanhatalo
H. Jänes
H. Orav-Kotta
L. Rugiu
V. Jormalainen
I. Bobsien
M. Viitasalo
E. Virtanen
A. N. Sandman
M. Isaeus
S. Leidenberger
Per R. Jonsson
Kerstin Johannesson
Publicerad i Scientific Reports
Volym 9
Nummer/häfte 1
ISSN 2045-2322
Publiceringsår 2019
Publicerad vid Institutionen för biologi och miljövetenskap, Tjärnö marinbiologiska laboratorium
Språk en
Länkar dx.doi.org/10.1038/s41598-018-38416...
Ämneskategorier Marin ekologi

Sammanfattning

Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone. © 2019, The Author(s).

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?