Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

A new numerical model for… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

A new numerical model for understanding free and dissolved gas progression toward the atmosphere in aquatic methane seepage systems

Artikel i vetenskaplig tidskrift
Författare Pär Jansson
Bénédicte Ferré
Anna Silyakova
Knut Ola Dølven
Anders Omstedt
Publicerad i Limnology and Oceanography : Methods
Volym 17
Nummer/häfte 3
Sidor 223-239
ISSN 1541-5856
Publiceringsår 2019
Publicerad vid Institutionen för marina vetenskaper
Sidor 223-239
Språk en
Länkar doi.org/10.1002/lom3.10307
Ämneskategorier Marin ekologi

Sammanfattning

© 2019 The Authors. Limnology and Oceanography: Methods published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. We present a marine two-phase gas model in one dimension (M2PG1) resolving interaction between the free and dissolved gas phases and the gas propagation toward the atmosphere in aquatic environments. The motivation for the model development was to improve the understanding of benthic methane seepage impact on aquatic environments and its effect on atmospheric greenhouse gas composition. Rising, dissolution, and exsolution of a wide size-range of bubbles comprising several gas species are modeled simultaneously with the evolution of the aqueous gas concentrations. A model sensitivity analysis elucidates the relative importance of process parameterizations and environmental effects on the gas behavior. The parameterization of transfer velocity across bubble rims has the greatest influence on the resulting gas distribution, and bubble sizes are critical for predicting the fate of emitted bubble gas. High salinity increases the rise height of bubbles; whereas temperature does not significantly alter it. Vertical mixing and aerobic oxidation play insignificant roles in environments where advection is important. The model, applied in an Arctic Ocean methane seepage location, showed good agreement with acoustically derived bubble rise heights and in situ sampled methane concentration profiles. Coupled with numerical ocean circulation and biogeochemical models, M2PG1 could predict the impact of benthic methane emissions on the marine environment and the atmosphere on long time scales and large spatial scales. Because of its flexibility, M2PG1 can be applied in a wide variety of environmental settings and future M2PG1 applications may include gas leakage from seafloor installations and bubble injection by wave action.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?