Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Matrix product state repr… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Matrix product state representation of quasielectron wave functions

Artikel i vetenskaplig tidskrift
Författare J. Kjall
E. Ardonne
V. Dwivedi
Maria Hermanns
T. H. Hansson
Publicerad i Journal of Statistical Mechanics-Theory and Experiment
Sidor 60
ISSN 1742-5468
Publiceringsår 2018
Publicerad vid Institutionen för fysik (GU)
Sidor 60
Språk en
Länkar dx.doi.org/10.1088/1742-5468/aab679
Ämnesord conformal field theory, fractional QHE, fractional statistics, tensor, network simulations, quantum hall states, non-abelian statistics, one-component plasma, many-body systems, fractional quantization, quasi-particles, field, theory, renormalization, excitations, conductance
Ämneskategorier Annan fysik


Matrix product state techniques provide a very efficient way to numerically evaluate certain classes of quantum Hall wave functions that can be written as correlators in two-dimensional conformal field theories. Important examples are the Laughlin and Moore-Read ground states and their quasihole excitations. In this paper, we extend the matrix product state techniques to evaluate quasielectron wave functions, a more complex task because the corresponding conformal field theory operator is not local. We use our method to obtain density profiles for states with multiple quasielectrons and quasiholes, and to calculate the (mutual) statistical phases of the excitations with high precision. The wave functions we study are subject to a known difficulty: the position of a quasielectron depends on the presence of other quasiparticles, even when their separation is large compared to the magnetic length. Quasielectron wave functions constructed using the composite fermion picture, which are topologically equivalent to the quasielectrons we study, have the same problem. This flaw is serious in that it gives wrong results for the statistical phases obtained by braiding distant quasiparticles. We analyze this problem in detail and show that it originates from an incomplete screening of the topological charges, which invalidates the plasma analogy. We demonstrate that this can be remedied in the case when the separation between the quasiparticles is large, which allows us to obtain the correct statistical phases. Finally, we propose that a modification of the Laughlin state, that allows for local quasielectron operators, should have good topological properties for arbitrary configurations of excitations.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?