Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Robustness of two differe… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Robustness of two different methods of monitoring respiratory system compliance during mechanical ventilation.

Artikel i vetenskaplig tidskrift
Författare Gaetano Perchiazzi
Christian Rylander
Mariangela Pellegrini
Anders Larsson
Göran Hedenstierna
Publicerad i Medical & biological engineering & computing
Volym 55
Nummer/häfte 10
Sidor 1819-1828
ISSN 1741-0444
Publiceringsår 2017
Publicerad vid
Sidor 1819-1828
Språk en
Länkar dx.doi.org/10.1007/s11517-017-1631-...
www.ncbi.nlm.nih.gov/entrez/query.f...
Ämnesord Algorithms, Animals, Neural Networks (Computer), Pressure, Respiration, Artificial, methods, Respiratory Function Tests, methods, Respiratory Mechanics, physiology, Respiratory System, physiopathology, Swine, Tidal Volume, physiology
Ämneskategorier Intensivvård

Sammanfattning

Robustness measures the performance of estimation methods when they work under non-ideal conditions. We compared the robustness of artificial neural networks (ANNs) and multilinear fitting (MLF) methods in estimating respiratory system compliance (C RS) during mechanical ventilation (MV). Twenty-four anaesthetized pigs underwent MV. Airway pressure, flow and volume were recorded at fixed intervals after the induction of acute lung injury. After consecutive mechanical breaths, an inspiratory pause (BIP) was applied in order to calculate CRS using the interrupter technique. From the breath preceding the BIP, ANN and MLF had to compute CRS in the presence of two types of perturbations: transient sensor disconnection (TD) and random noise (RN). Performance of the two methods was assessed according to Bland and Altman. The ANN presented a higher bias and scatter than MLF during the application of RN, except when RN was lower than 2% of peak airway pressure. During TD, MLF algorithm showed a higher bias and scatter than ANN. After the application of RN, ANN and MLF maintain a stable performance, although MLF shows better results. ANNs have a more stable performance and yield a more robust estimation of C RS than MLF in conditions of transient sensor disconnection.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?