Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Rock mechanical modelling… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Rock mechanical modelling of the Bentonite Rock Interaction Experiment, Aspo Hard Rock Laboratory, Sweden

Artikel i vetenskaplig tidskrift
Författare Åsa Fransson
M. Lonnqvist
G. Viola
Publicerad i International Journal of Rock Mechanics and Mining Sciences
Volym 113
Sidor 255-267
ISSN 1365-1609
Publiceringsår 2019
Publicerad vid Institutionen för geovetenskaper
Sidor 255-267
Språk en
Länkar dx.doi.org/10.1016/j.ijrmms.2018.10...
Ämnesord Rock mechanical modelling, Construction stages, Induced stresses, Structural geological mapping, Engineering, Mining & Mineral Processing
Ämneskategorier Geovetenskap och miljövetenskap

Sammanfattning

The Bentonite Rock Interaction Experiment (BRIE) was performed in a tunnel at a depth of 420 m at the Aspo Hard Rock Laboratory in Sweden. The experiment focused on the hydraulic properties of rock and bentonite aiming at investigating the exchange of water across a bentonite-rock interface. The hypothesis for the mechanical modelling presented here was that changes in flow (observed in rock and on bentonite parcels) were due to local mechanical deformation. Induced stresses related to the construction (and experimental) stages for the BRIE site such as excavation of tunnels, drilling and over-coring of two vertical, tunnel-floor boreholes and, finally, installation and swelling of bentonite, were expected to be the main causes of these deformations. We assumed that this could be investigated using a step-wise rock mechanical modelling approach (with a relevant modelling sequence) and validated by using a transdisciplinary approach including field structural geological mapping (geometric, kinematic and dynamic interpretation of the exposed fracture sets) and hydrogeological investigations. For key fractures intersecting the boreholes, the modelled fracture normal and shear displacements were found to be local, small, and in line with field observations and measurements for BRIE. Results point at an agreement between the spatial locations of changes in flow identified from the bentonite parcels and the locations of inelastic deformation indicated by mechanical modelling for a reverse stress regime. Besides providing information about the key fractures, the structural mapping allowed to establish solid relationships between brittle structural features in the tunnel and in the cores, which were used as, or compared to, the main fracture input to the rock mechanical modelling. The identified fracture sets were found to be structurally reconcilable with the larger-scale tectonic picture of the area.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?