Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Performance of a feature-… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Performance of a feature-based algorithm for 3D-3D registration of CT angiography to cone-beam CT for endovascular repair of complex abdominal aortic aneurysms

Artikel i vetenskaplig tidskrift
Författare Giasemi Koutouzi
B. Nasihatkton
Monika Danielak-Nowak
Henrik Leonhardt
Mårten Falkenberg
F. Kahl
Publicerad i BMC Medical Imaging
Volym 18
Nummer/häfte 1
ISSN 1471-2342
Publiceringsår 2018
Publicerad vid Institutionen för kliniska vetenskaper, Avdelningen för radiologi
Språk en
Länkar dx.doi.org/10.1186/s12880-018-0285-...
Ämnesord Aortic aneurysm, Cone-beam CT, Feature-based registration, Image registration, Intensity-based registration
Ämneskategorier Radiologi och bildbehandling

Sammanfattning

Background: A crucial step in image fusion for intraoperative guidance during endovascular procedures is the registration of preoperative computed tomography angiography (CTA) with intraoperative Cone Beam CT (CBCT). Automatic tools for image registration facilitate the 3D image guidance workflow. However their performance is not always satisfactory. The aim of this study is to assess the accuracy of a new fully automatic, feature-based algorithm for 3D3D registration of CTA to CBCT. Methods: The feature-based algorithm was tested on clinical image datasets from 14 patients undergoing complex endovascular aortic repair. Deviations in Euclidian distances between vascular as well as bony landmarks were measured and compared to an intensity-based, normalized mutual information algorithm. Results: The results for the feature-based algorithm showed that the median 3D registration error between the anatomical landmarks of CBCT and CT images was less than 3mm. The feature-based algorithm showed significantly better accuracy compared to the intensity-based algorithm (p<0.001). Conclusion: A feature-based algorithm for 3D image registration is presented. © 2018 The Author(s).

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?