Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Angle-Independent Polarit… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Angle-Independent Polariton Emission Lifetime Shown by Perylene Hybridized to the Vacuum Field Inside a Fabry-Perot Cavity

Artikel i vetenskaplig tidskrift
Författare Jürgen Mony
Manuel Hertzog
Khushbu Kushwaha
Karl Börjesson
Publicerad i Journal of Physical Chemistry C
Volym 122
Nummer/häfte 43
Sidor 24917-24923
ISSN 1932-7447
Publiceringsår 2018
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 24917-24923
Språk en
Länkar dx.doi.org/10.1021/acs.jpcc.8b07283
Ämnesord light-matter states, strong-coupling regime, exciton-polaritons, room-temperature, energy-transfer, microcavity, transition, chemistry, dynamics, range, Chemistry, Science & Technology - Other Topics, Materials Science
Ämneskategorier Kemi

Sammanfattning

The formation of hybrid light-matter states in optical structures, manifested as a Rabi splitting of the eigenenergies of a coupled system, is one of the key effects in quantum optics. The hybrid states (exciton polaritons) have unique chemical and physical properties and can be viewed as a linear combination of light and matter. The optical properties of the exciton polaritons are dispersive by nature, a property inherited from the photonic contribution to the polariton. On the other hand, the polariton lifetime in organic molecular systems has recently been highly debated. The photonic contribution to the polariton would suggest a lifetime on the femtosecond time scale, much shorter than experimentally observed. Here, we increase the insights of light-mater states by showing that the polariton emission lifetime is nondispersive. A perylene derivative was strongly coupled to the vacuum field by incorporating the molecule into a Fabry-Perot cavity. The polariton emission from the cavity was shown to be dispersive, but the emission lifetime was nondispersive and on the time scale of the bare exciton. The results were rationalized by the exciton reservoir model, giving experimental evidence to currently used theories, thus improving our understanding of strong coupling phenomena in molecules.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?