Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Investigation of magnetic… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Investigation of magnetic droplet solitons using x-ray holography with extended references

Artikel i vetenskaplig tidskrift
Författare E. Burgos-Parra
N. Bukin
S. Sani
A. I. Figueroa
G. Beutier
M. Dupraz
Sunjae Chung
Philipp Dürrenfeld
Q. Tuan Le
S. M. Mohseni
Afshin Houshang
S. A. Cavill
R. J. Hicken
Johan Åkerman
G. van der Laan
F. Y. Ogrin
Publicerad i Scientific Reports
Volym 8
ISSN 2045-2322
Publiceringsår 2018
Publicerad vid Institutionen för fysik (GU)
Språk en
Länkar dx.doi.org/10.1038/s41598-018-29856...
Ämnesord electric-current, excitation, autocorrelation, operation, Science & Technology - Other Topics
Ämneskategorier Fysik


A dissipative magnetic soliton, or magnetic droplet, is a structure that has been predicted to exist within a thin magnetic layer when non-linearity is balanced by dispersion, and a driving force counteracts the inherent damping of the spin precession. Such a soliton can be formed beneath a nano-contact (NC) that delivers a large spin-polarized current density into a magnetic layer with perpendicular magnetic anisotropy. Although the existence of droplets has been confirmed from electrical measurements and by micromagnetic simulations, only a few attempts have been made to directly observe the magnetic landscape that sustains these structures, and then only for a restricted set of experimental parameter values. In this work we use and x-ray holography technique HERALDO, to image the magnetic structure of the [ Co/ Ni] x4 multilayer within a NC orthogonal pseudo spin-valve, for different range of magnetic fields and injected electric currents. The magnetic configuration imaged at -33 mA and 0.3 T for devices with 90 nm NC diameter reveals a structure that is within the range of current where the droplet soliton exist based on our electrical measurements and have it is consistent with the expected size of the droplet (similar to 100 nm diameter) and its spatial position within the sample. We also report the magnetisation configurations observed at lower DC currents in the presence of fields (0-50 mT), where it is expected to observe regimes of the unstable droplet formation.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?