Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Biomineralization at Tita… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Biomineralization at Titanium Revealed by Correlative 4D Tomographic and Spectroscopic Methods

Artikel i vetenskaplig tidskrift
Författare X. Y. Wang
B. Langelier
Furqan A. Shah
A. Korinek
M. Bugnet
A. P. Hitchcock
Anders Palmquist
K. Grandfield
Publicerad i Advanced Materials Interfaces
Volym 5
Nummer/häfte 14
ISSN 2196-7350
Publiceringsår 2018
Publicerad vid Institutionen för kliniska vetenskaper, Avdelningen för biomaterialvetenskap
Språk en
Länkar dx.doi.org/10.1002/admi.201800262
Ämnesord atom probe tomography, biomineralization, bone-implant interface, correlative electron tomography, atom-probe tomography, electron tomography, apatite nanocrystals, chemical tomography, bone, implants, interfaces, microscopy, osseointegration, osteopontin, Chemistry, Materials Science
Ämneskategorier Biomaterialvetenskap

Sammanfattning

At an implant biointerface, where an engineered material merges into a biological environment, complex biophysicochemical interactions occur. One typical biointerface is the bond between human bone and dental or orthopedic implants, which is based on the biomineralization of essential bone components such as hydroxyapatite, at the implant surface. However, the exact bonding mechanism between bone and implants is still unclear. The distribution of both the mineralized and organic components of bone at the interface, and their origins, requires improved characterization. Here, the first correlative characterization is reported using multiple-length-scale tomography and spectroscopy techniques to probe the chemical structure of the biointerface between human bone and commercial titanium dental implant down to the atomic scale in four dimensions (4D). The existence of an intervening transition zone bonding mature bone tissue is demonstrated to implant at multiple length scales, where the phase of bone mineral differs immediately adjacent to the implant and atomic-scale osseointegration is confirmed. The correlative 4D electron energy loss spectroscopy tomography and atom probe tomography workflow established herein is transferable to other applications in materials or biological sciences.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?