Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Input-dependent modulatio… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex

Artikel i vetenskaplig tidskrift
Författare Elena V Orekhova
O. V. Sysoeva
Justin F. Schneiderman
Sebastian Lundström
I. A. Galuta
D. E. Goiaeva
A. O. Prokofyev
Bushra Riaz
C. Keeler
Nouchine Hadjikhani
Christopher Gillberg
T. A. Stroganova
Publicerad i Scientific Reports
Volym 8
ISSN 2045-2322
Publiceringsår 2018
Publicerad vid Institutionen för neurovetenskap och fysiologi
Gillbergcentrum
Centrum för etik, juridik och mental hälsa
Språk en
Länkar https://doi.org/10.1038/s41598-018-...
Ämnesord temporal-frequency-selectivity, autism spectrum disorders, neuronal, oscillations, prefrontal cortex, gaba(a) receptors, interneurons, macaque, responses, motion, v1, Science & Technology - Other Topics
Ämneskategorier Neurovetenskaper

Sammanfattning

Gamma-band oscillations arise from the interplay between neural excitation (E) and inhibition (I) and may provide a non-invasive window into the state of cortical circuitry. A bell-shaped modulation of gamma response power by increasing the intensity of sensory input was observed in animals and is thought to reflect neural gain control. Here we sought to find a similar input-output relationship in humans with MEG via modulating the intensity of a visual stimulation by changing the velocity/temporal-frequency of visual motion. In the first experiment, adult participants observed static and moving gratings. The frequency of the MEG gamma response monotonically increased with motion velocity whereas power followed a bell-shape. In the second experiment, on a large group of children and adults, we found that despite drastic developmental changes in frequency and power of gamma oscillations, the relative suppression at high motion velocities was scaled to the same range of values across the life-span. In light of animal and modeling studies, the modulation of gamma power and frequency at high stimulation intensities characterizes the capacity of inhibitory neurons to counterbalance increasing excitation in visual networks. Gamma suppression may thus provide a non-invasive measure of inhibitory-based gain control in the healthy and diseased brain.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?