Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Rapid Water Transport thr… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Rapid Water Transport through Organic Layers on Ice

Artikel i vetenskaplig tidskrift
Författare Xiangrui Kong
Céline Toubin
Alena Habartova
Eva Pluharova
Martina Roeselova
Jan B. C. Pettersson
Publicerad i Journal of Physical Chemistry A
Volym 122
Nummer/häfte 21
Sidor 4861-4868
ISSN 1089-5639
Publiceringsår 2018
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 4861-4868
Språk en
Länkar doi.org/10.1021/acs.jpca.8b01951
Ämneskategorier Teoretisk kemi, Yt- och kolloidkemi, Kemisk fysik, Kinetik

Sammanfattning

Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen-bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K, and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient, but dramatically changes the detailed molecular dynamics and kinetics.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?