Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Optimizing Ti:Sapphire la… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Optimizing Ti:Sapphire laser for quantitative biomedical imaging

Paper i proceeding
Författare Jeemol James
Hanna Thomsen
Dag Hanstorp
Felipe Ademir Alemán Hérnandez
Sebastian Rothe
Jonas Enger
Marica B Ericson
Publicerad i Progress in Biomedical Optics and Imaging - Proceedings of SPIE. 1049824
ISBN 978-1-5106-1482-6
ISSN 1605-7422
Förlag SPIE
Publiceringsår 2018
Publicerad vid Institutionen för kemi och molekylärbiologi
Institutionen för fysik (GU)
Språk en
Länkar https://doi.org/10.1117/12.2286732
Ämnesord fluorescence correlation spectroscopy, fluorescence life time imaging, multiphoton microscopy, Narrow line width, tissue imaging
Ämneskategorier Spektroskopi, Medicinsk bildbehandling, Optik

Sammanfattning

Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker & Hickl) which will give a novel dimension in quantitative biomedical imaging.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?