Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Alcohols enhance the rate… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance

Artikel i vetenskaplig tidskrift
Författare L. Lindahl
Samuel Genheden
F. Faria-Oliveira
S. Allard
Leif A Eriksson
L. Olsson
M. Bettiga
Publicerad i Microbial Cell
Volym 5
Nummer/häfte 1
Sidor 42-55
ISSN 2311-2638
Publiceringsår 2018
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 42-55
Språk en
Länkar dx.doi.org/10.15698/mic2018.01.609
Ämnesord ethanol, n-butanol, lignocellulose, inhibitors, molecular dynamics simulations, membrane, molecular-dynamics simulations, programmed cell-death, saccharomyces-cerevisiae, plasma-membrane, ethanol tolerance, stress-adaptation, intracellular ph, lipid-bilayers, force-field, weak, acids, Cell Biology, shra p, 1989, applied microbiology and biotechnology, v30, p294
Ämneskategorier Cellbiologi

Sammanfattning

Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. nbutanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?