Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Holographic optical tweez… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes

Paper i proceeding
Författare Emma Eriksson
Jan Scrimgeour
Jonas Enger
Mattias Goksör
Publicerad i Proceedings of SPIE - The International Society for Optical Engineering
ISSN 0277-786X
Publiceringsår 2007
Publicerad vid Institutionen för fysik (GU)
Språk en
Länkar doi.org/10.1117/12.721859
Ämnesord Environmental changes, GFP, Holographic optical tweezers, Lab-on-a-chip, Microfluidics, Osmosis, Single cell, SLM, Soft lithography, Yeast
Ämneskategorier Biologisk fysik

Sammanfattning

Optical manipulation techniques have become an important research tool for single cell experiments in microbiology. Using optical tweezers, single cells can be trapped and held during long experiments without risk of cross contamination or compromising viability. However, it is often desirable to not only control the position of a cell, but also to control its environment. We have developed a method that combines optical tweezers with a microfluidic device. The microfluidic system is fabricated by soft lithography in which a constant flow is established by a syringe pump. In the microfluidic system multiple laminar flows of different media are combined into a single channel, where the fluid streams couple viscously. Adjacent media will mix only by diffusion, and consequently two different environments will be separated by a mixing region a few tens of micrometers wide. Thus, by moving optically trapped cells from one medium to another we are able to change the local environment of the cells in a fraction of a second. The time needed to establish a change in environment depends on several factors such as the strength of the optical traps and the steepness of the concentration gradient in the mixing region. By introducing dynamic holographic optical tweezers several cells can be trapped and analyzed simultaneously, thus shortening data acquisition time. The power of this system is demonstrated on yeast (Saccharomyces cerevisiae) subjected to osmotic stress, where the volume of the yeast cell and the spatial localization of green fluorescent proteins (GFP) are monitored using fluorescence microscopy.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?