Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

BRAPH: A graph theory sof… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

BRAPH: A graph theory software for the analysis of brain connectivity

Artikel i vetenskaplig tidskrift
Författare M. Mijalkov
E. Kakaei
J. B. Pereira
E. Westman
Giovanni Volpe
Publicerad i Plos One
Volym 12
Nummer/häfte 8
ISSN 1932-6203
Publiceringsår 2017
Publicerad vid Institutionen för fysik (GU)
Språk en
Länkar doi.org/10.1371/journal.pone.017879...
Ämnesord MILD COGNITIVE IMPAIRMENT, TIME-VARYING CONNECTIVITY, SMALL-WORLD, NETWORKS, PARKINSONS-DISEASE, ALZHEIMERS-DISEASE, HUMAN CONNECTOME, FUNCTIONAL CONNECTIVITY, SCHIZOPHRENIA, TOPOLOGY, TOOLBOX
Ämneskategorier Neurovetenskaper

Sammanfattning

The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?