Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Feedback solutions for lo… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Feedback solutions for low crosstalk in dense arrays of high-T-c SQUIDs for on-scalp MEG

Artikel i vetenskaplig tidskrift
Författare S. Ruffieux
M. Xie
M. Chukharkin
C. Pfeiffer
A. Kalabukhov
D. Winkler
Justin F. Schneiderman
Publicerad i Superconductor Science & Technology
Volym 30
Nummer/häfte 5
ISSN 0953-2048
Publiceringsår 2017
Publicerad vid Institutionen för neurovetenskap och fysiologi
Språk en
Länkar https://doi.org/10.1088/1361-6668/a...
Ämnesord on-scalp magnetoencephalography, multichannel crosstalk, SQUID, high-temperature, biomagnetic measurements, magnetometers, magnetoencephalography, Physics
Ämneskategorier Fysik

Sammanfattning

Magnetoencephalography (MEG) systems based on a dense array of high critical temperature (high-T-c) superconducting quantum interference devices (SQUIDs) can theoretically outperform a state-of-the-art MEG system. On the way towards building such a multichannel system, we evaluate feedback methods suitable for use in dense high-T-c SQUID arrays where the sensors are in very close proximity to the head (on-scalp MEG). We test on-chip superconducting coils and direct injection of the feedback current into the SQUID loop as alternatives to the wire-wound copper coils commonly used in single-channel high-T-c SQUID-based MEG systems. For the evaluation, we have performed coupling, noise, and crosstalk measurements. We conclude that direct injection is the optimal solution for dense on-scalp MEG as it gives crosstalk below 0.5% even between SQUIDs whose pickup loops are within 0.8 mm of one another. Further, this solution provides sufficient flux coupling without adding additional noise. Finally, it does not compromise the standoff distance, which is important for on-scalp MEG.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?