Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Comparison of Early-Phase… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Comparison of Early-Phase 11C-Deuterium-l-Deprenyl and 11C-Pittsburgh Compound B PET for Assessing Brain Perfusion in Alzheimer Disease.

Artikel i vetenskaplig tidskrift
Författare Elena Rodriguez-Vieitez
Stephen F Carter
Konstantinos Chiotis
Laure Saint-Aubert
Antoine Leuzy
Michael Schöll
Ove Almkvist
Anders Wall
Bengt Långström
Agneta Nordberg
Publicerad i Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Volym 57
Nummer/häfte 7
Sidor 1071-7
ISSN 1535-5667
Publiceringsår 2016
Publicerad vid
Sidor 1071-7
Språk en
Länkar dx.doi.org/10.2967/jnumed.115.16873...
www.ncbi.nlm.nih.gov/entrez/query.f...
Ämneskategorier Klinisk medicin, Medicinsk bioteknologi

Sammanfattning

The PET tracer (11)C-deuterium-L-deprenyl ((11)C-DED) has been used to visualize activated astrocytes in vivo in patients with Alzheimer disease (AD). In this multitracer PET study, early-phase (11)C-DED and (11)C-Pittsburgh compound B ((11)C-PiB) (eDED and ePiB, respectively) were compared as surrogate markers of brain perfusion, and the extent to which (11)C-DED binding is influenced by brain perfusion was investigated.(11)C-DED, (11)C-PiB, and (18)F-FDG dynamic PET scans were obtained in age-matched groups comprising AD patients (n = 8), patients with mild cognitive impairment (n = 17), and healthy controls (n = 16). A modified reference Patlak model was used to quantify (11)C-DED binding. A simplified reference tissue model was applied to both (11)C-DED and (11)C-PiB to measure brain perfusion relative to the cerebellar gray matter (R1) and binding potentials. (11)C-PiB retention and (18)F-FDG uptake were also quantified as target-to-pons SUV ratios in 12 regions of interest (ROIs).The strongest within-subject correlations with the corresponding R1 values (R1,DED and R1,PiB, respectively) and with (18)F-FDG uptake were obtained when the eDED and ePiB PET data were measured 1-4 min after injection. The optimum eDED/ePiB intervals also showed strong, significant ROI-based intersubject Pearson correlations with R1,DED/R1,PiB and with (18)F-FDG uptake, whereas (11)C-DED binding was largely independent of brain perfusion, as measured by eDED. Corresponding voxelwise correlations confirmed the ROI-based results. Temporoparietal eDED or ePiB brain perfusion measurements were highly discriminative between patient and control groups, with discriminative ability statistically comparable to that of temporoparietal (18)F-FDG glucose metabolism. Hypometabolism extended over wider regions than hypoperfusion in patient groups compared with controls.The 1- to 4-min early-frame intervals of (11)C-DED or (11)C-PiB are suitable surrogate measures for brain perfusion. (11)C-DED binding is independent of brain perfusion, and thus (11)C-DED PET can provide information on both functional (brain perfusion) and pathologic (astrocytosis) aspects from a single PET scan. In comparison with glucose metabolism, early-phase (11)C-DED and (11)C-PiB perfusion appear to provide complementary rather than redundant information.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?