Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Strong electron-phonon co… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Strong electron-phonon coupling in the sigma band of graphene

Artikel i övriga tidskrifter
Författare Federico Mazzola
Thomas Frederiksen
Thiagarajan Balasubramanian
Philip Hofmann
Bo Hellsing
Justin Wells
Publicerad i arXiv
Sidor 1-11
Publiceringsår 2016
Publicerad vid Institutionen för fysik (GU)
Sidor 1-11
Språk en
Länkar https://arxiv.org/abs/1607.00939
Ämnesord graphene, electron structure, phonon structure, electron-phonon coupling, sigma band, superconductivity
Ämneskategorier Elektronstruktur

Sammanfattning

First-principles studies of the electron-phonon coupling in graphene predict a high coupling strength for the 𝜎 band with values of the dimensionless electron-phonon coupling constant 𝜆 up to 0.9. Near the top of the 𝜎 band 𝜆 is found to be ≈ 0.7. This value is consistent with the observed kink in the 𝜎 band dispersion near the Γ-point in the Brillouin zone [1]. The calculations show that the electron-phonon coupling is driven primarily by the optical LO and TO phonon modes in graphene. The photoemission intensity from the 𝜎 band is strongly suppressed near the Γ-point due to sub-lattice interference effects. These effects are removed by taking data in the neighbouring Brillouin zone. By this we have been able to disentangle the influence of sub-lattice interference and electron-phonon coupling. Whilst superconductivity has been absent from graphene's list of exceptional properties, despite considerable experimental attempts, we speculate that if the strong EPC in the 𝜎 band survives a modification that shifts it to the Fermi level, e.g. by means of atomic substitution, a superconducting transition temperatures of around 70 K could be reached.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?