Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Enhanced Volatile Organic… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

Artikel i vetenskaplig tidskrift
Författare Ivan Kourtchev
Chiara Giorio
Antti Manninen
Eoin Wilson
Brendan Mahon
Juho Aalto
Maija Kajos
Dean Venables
Taina Ruuskanen
Janne Levula
Matti Loponen
Sarah Connors
Neil Harris
Defeng Zhao
Astrid Kiendler-Scharr
Thomas Mentel
Yinon Rudich
Mattias Hallquist
Jean-Francois Doussin
Willy Maenhaut
Jaana Bäck
Tuukka Petäjä
John Wenger
Markku Kulmala
Markus Kalberer
Publicerad i Scientific Reports
Volym 6
Sidor artikel nr 35038
ISSN 2045-2322
Publiceringsår 2016
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor artikel nr 35038
Språk en
Länkar dx.doi.org/10.1038/srep35038
Ämneskategorier Meteorologi och atmosfärforskning, Miljökemi, Miljövetenskap, Klimatforskning, Organisk kemi, Fysikalisk kemi, Analytisk kemi, Kemi

Sammanfattning

Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?