Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Grammaticality, Acceptabi… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Grammaticality, Acceptability, and Probability: A Probabilistic View of Linguistic Knowledge

Artikel i vetenskaplig tidskrift
Författare Jey Han Lau
Alexander Clark
Shalom Lappin
Publicerad i Cognitive Science
Volym 41
Nummer/häfte 5
Sidor 1202–1241
ISSN 0364-0213
Publiceringsår 2017
Publicerad vid Institutionen för filosofi, lingvistik och vetenskapsteori
Sidor 1202–1241
Språk en
Länkar dx.doi.org/10.1111/cogs.12414
https://gup.ub.gu.se/file/202371
Ämnesord Grammaticality; Syntactic knowledge; Probabilistic modeling
Ämneskategorier Data- och informationsvetenskap, Psykologi

Sammanfattning

The question of whether humans represent grammatical knowledge as a binary condition on membership in a set of well-formed sentences, or as a probabilistic property has been the subject of debate among linguists, psychologists, and cognitive scientists for many decades. Acceptability judgments present a serious problem for both classical binary and probabilistic theories of grammaticality. These judgements are gradient in nature, and so cannot be directly accommodated in a binary formal grammar. However, it is also not possible to simply reduce acceptability to probability. The acceptability of a sentence is not the same as the likelihood of its occurrence, which is, in part, determined by factors like sentence length and lexical frequency. In this paper, we present the results of a set of large-scale experiments using crowd-sourced acceptability judgments that demonstrate gradience to be a pervasive feature in acceptability judgments. We then show how one can predict acceptability judgments on the basis of probability by augmenting probabilistic language models with an acceptability measure. This is a function that normalizes probability values to eliminate the confounding factors of length and lexical frequency. We describe a sequence of modeling experiments with unsupervised language models drawn from state-of-the-art machine learning methods in natural language processing. Several of these models achieve very encourag- ing levels of accuracy in the acceptability prediction task, as measured by the correlation between the acceptability measure scores and mean human acceptability values. We consider the relevance of these results to the debate on the nature of grammatical competence, and we argue that they support the view that linguistic knowledge can be intrinsically probabilistic. Keywords: Grammaticality; Syntactic knowledge; Probabilistic modeling

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?