Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Thermal depth profiling o… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Thermal depth profiling of materials for defect detection using hot disk technique

Artikel i vetenskaplig tidskrift
Författare B.M. Mihiretie
Daniel Cederkrantz
Maria Sundin
Arne Rosen
Henrik Otterberg
Åsa Hinton
Björn Berg
Magnus Karlsteen
Publicerad i AIP Advances
Volym 6
Nummer/häfte 8
Sidor artikel nr 085217
ISSN 2158-3226
Publiceringsår 2016
Publicerad vid Institutionen för fysik (GU)
Sidor artikel nr 085217
Språk en
Länkar dx.doi.org/10.1063/1.4961879
scitation.aip.org/docserver/fulltex...
https://gup.ub.gu.se/file/204954
Ämnesord inhomogeneous detection, thermal conductivity, hot disk technique, finite element simulation
Ämneskategorier Den kondenserade materiens fysik

Sammanfattning

A novel application of the hot disk transient plane source technique is described. The new application yields the thermal conductivity of materials as a function of the thermal penetration depth which opens up opportunities in nondestructive testing of inhomogeneous materials. The system uses the hot disk sensor placed on the material surface to create a time varying temperature field. The thermal conductivity is then deduced from temperature evolution of the sensor, whereas the probing depth (the distance the heat front advanced away from the source) is related to the product of measurement time and thermal diffusivity. The presence of inhomogeneity in the structure is manifested in thermal conductivity versus probing depth plot. Such a plot for homogeneous materials provides fairly constant value. The deviation from the homogeneous curve caused by defects in the structure is used for inhomogeneity detection. The size and location of the defect in the structure determines the sensitivity and possibility of detection. In addition, a complementary finite element numerical simulation through COMSOL Multiphysics is employed to solve the heat transfer equation. Temperature field profile of a model material is obtained from these simulations. The average rise in temperature of the heat source is calculated and used to demonstrate the effect of the presence of inhomogeneity in the system.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?