Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

An evaluation of gas tran… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

An evaluation of gas transfer velocity parameterizations during natural convection using DNS

Artikel i vetenskaplig tidskrift
Författare Sam Fredriksson
Lars Arneborg
Håkan Nilsson
Qi Zhang
Robert Handler
Publicerad i Journal of Geophysical Research - Oceans
Volym 121
Nummer/häfte 2
Sidor 1400-1423
ISSN 0148-0227
Publiceringsår 2016
Publicerad vid Institutionen för marina vetenskaper
Sidor 1400-1423
Språk en
Länkar dx.doi.org/10.1002/2015JC011112
https://gup.ub.gu.se/file/190900
Ämnesord air-sea gas exchange, turbulence, heat flux, natural convection, direct numerical simulations, gas transfer velocity, surface cooling
Ämneskategorier Klimatforskning, Oceanografi

Sammanfattning

Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, k(s) = A (Bv)(1/4) Sc2(n), where A is a constant, B is the buoyancy flux, m is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A = 0.39 and n approximate to 1/2 and n approximate to 2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?